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In-medium subthreshold K̄ N scattering amplitudes calculated within a chirally motivated meson–baryon 
coupled-channel model are used self consistently to confront K − atom data across the periodic table. 
Substantially deeper K − nuclear potentials are obtained compared to the shallow potentials derived in 
some approaches from threshold K̄ N amplitudes, with Re V chiral

K − = −(85 ± 5) MeV at nuclear matter
density. When K̄ N N contributions are incorporated phenomenologically, a very deep K − nuclear 
potential results, Re V chiral+phen.

K − = −(180 ± 5) MeV, in agreement with density dependent potentials
obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K −– 
nuclear quasibound states generated by V chiral

K − are reported and discussed.
© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The interaction of K − mesons with hadronic systems, rang-
ing from K − atoms through K −–nuclear clusters to dense strange 
hadronic matter realized perhaps in neutron stars, is of topical in-
terest [1]. SU(3) chiral symmetry combined with coupled channel 
techniques provides a theoretical framework in which low en-
ergy meson–baryon observables can be systematically evaluated. In 
such an approach the Λ(1405) resonance, dominating the K̄ N–πΣ

physics at energies near the K̄ N threshold, is generated dynami-
cally. It is natural then to expect a strongly attractive and absorp-
tive near-threshold K −–nuclear interaction which might support 
K −–nuclear clusters [2] and K − condensation in compact stars [3]. 
A typical scale for the nuclear-matter depth of chirally motivated 
K −–nuclear potentials is 100 MeV [4], although considerably shal-
lower potentials have also been derived [5]. Outside of chirally mo-
tivated interaction models, suggestions were put forward for much 
stronger potentials that could lead eventually to fairly narrow qua-
sibound K −–nuclear clusters once the strong transition K̄ N → πΣ

is kinematically forbidden [6]. These suggestions have stimulated 
experimental searches, the best known of which claiming rather 
broad signals of a deeply bound K − pp configuration, at and be-
low the πΣN threshold [7,8]. If these claims are substantiated in 
dedicated experiments, it would appear unavoidable to conclude 
that the K −–nuclear potential depth is considerably greater than
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100 MeV.1 It would also imply a rather strong two-nucleon non-
mesonic absorption mode K̄ N N → Y N (Y ≡ Λ,Σ ), considerably
beyond a chiral-model estimate Γ ≈ 22 MeV for a single-nucleon
induced Λ(1405)N → Y N conversion [11]. In the present Letter we
focus on the use of in-medium chirally motivated K −–nuclear po-
tentials in kaonic atoms and discuss the constraints provided by a 
self consistent analysis of kaonic atom data.

Strong interaction level shifts and widths in kaonic atoms 
present a unique source of information on the K −–nuclear in-
teraction at threshold [12]. Phenomenological analyses of large 
data sets encompassing the whole periodic table, using optical 
potentials, reveal characteristic features of the interaction. These 
could reflect on the underlying K −N interaction in the medium, 
in particular its energy and density dependence. Phenomenolog-
ical density-dependent K −N scattering amplitudes allow for very 
good fits to kaonic atom data [13,14] but the depths of the real op-
tical potential are typically up to four times larger than what some 
in-medium chiral models predict at threshold [5]. Another feature 
of empirical kaonic atom optical potentials is that the real part 
is compressed relative to the corresponding nuclear density, with 
r.m.s. radius smaller than the nuclear r.m.s. radius. The reverse is 
true for the imaginary part. It is shown below that these are nat-
ural consequences of the density dependence of the present chiral 
model in-medium amplitudes.

1 The distinction between deep (� 150 MeV) and shallow (� 50 MeV) K −–
nuclear potentials has been recently discussed within Λ hypernuclear formation 
rate calculations [9] which were found to slightly favor a deep potential interpreta-
tion of recent FINUDA spectra [10].
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The Klein–Gordon (KG) dispersion relation satisfied by K −
mesons in medium of density ρ is of the form

ω2
K − �p2

K − m2
K − ΠK (ωK ,ρ) = 0, (1)

where ΠK (ωK ,ρ) = 2(ReωK )V K − is the self energy (SE) opera-
tor for a K − meson with momentum �pK and energy ωK . A �pK

momentum dependence of ΠK is suppressed since, as is shown
below, it may be transformed into density and energy dependence.
In terms of the in-medium K −N c.m. forward scattering amplitude
F K −N (

√
s,ρ) (here assumed s-wave):

ΠK (ωK ,ρ) ≈ −4π

(
1 + ωK

mN

)
F K −N(

√
s,ρ)ρ, (2)

where s = (E K + EN )2 − (�pK + �pN )2 is the Lorentz invariant Man-
delstam variable s which reduces to the square of the total K −N
energy in the two-body c.m. frame and mN is the nucleon mass. In
the laboratory frame, E K = ωK . The KG dispersion relation (1) in
bound state applications for a K − meson leads to a KG equation
satisfied by the K − wavefunction [12]:
[
∇2 − 2μ(B K + V c) + (V c + B K )2

+ 4π

(
1 + mK − B K

mN

)
F K −N(

√
s,ρ)ρ

]
ψ = 0, (3)

where μ is the K −–nucleus reduced mass, V c is the Coulomb po-
tential generated by the finite-size nuclear charge distribution, and
B K = B K + iΓK /2 is a complex binding energy, including a strong
interaction width ΓK . Finite-medium corrections are applied in our
calculations specifically to the coefficient of F K −N in Eq. (3).

Wycech [15] and Bardeen and Torigoe [16] suggested long
time ago within Λ(1405)-based phenomenological models that
subthreshold K −N scattering amplitudes are relevant in kaonic
atom studies, where the kaon energy is essentially at thresh-
old. In the present Letter we construct the K − meson SE opera-
tor (2) near threshold (ωK ≈ mK ) from in-medium subthreshold
K −N scattering amplitudes derived within a chirally motivated
meson–baryon coupled-channel separable-potential model [17]. It
is shown for the first time how the energy and density depen-
dence of F K −N (

√
s,ρ) leads to a deep K −–nuclear potential V K −

in kaonic atoms. This conclusion holds already at the lowest-order
Tomozawa–Weinberg level that provides excellent starting point
for modern chiral models [2]. We also report on self-consistent cal-
culations of K − quasibound nuclear states based on in-medium
extensions of the free-space model of Ref. [17]. The calculated
binding energies and widths are compared with similar entities
calculated in Ref. [18].

2. Subthreshold energy and density dependence

The present calculations are based on the chirally motivated
meson–baryon coupled-channel separable-potential model of
Ref. [17]. This free-space model expands consistently and system-
atically to next-to-leading-order (NLO) within the heavy baryon
formulation of chiral perturbation theory. The low-energy con-
stants of the model are fitted to low energy K − p scattering and
reaction data. The free-space K −N scattering amplitude F K −N is
given then in a separable form:

F K −N = g(k) f K −N(
√

s )g
(
k′), g(k) = α2

k2 + α2
, (4)

with c.m. momenta �k, �k′ . Of the several versions specified in Ta-
ble 3 of Ref. [17], we chose the one with a range parameter
Fig. 1. Energy dependence of the c.m. K −N reduced amplitude (5) in version CS30
of the chiral model [17] below and above Eth = mK + mN = 1432 MeV. Dashed
curves: free-space amplitude; dot-dashed curves: Pauli blocked amplitude at 0.5ρ0;
solid curves: including meson and baryon self energies (SE), also at 0.5ρ0.

α = 639 MeV.2 Other chirally motivated potential models that start
with zero range, i.e. no momentum dependence, in practical ap-
plications often introduce at least implicitly a finite range, e.g., a
cutoff momentum qmax = 630 MeV [5] or a renormalization scale
μ = 630 MeV [20]. The momentum dependence of the amplitude
F K −N in the separable-potential model of Ref. [17] is rather weak
for the applications discussed in the present work and is secondary
to the strong energy dependence generated by the Λ(1405) reso-
nance.

A typical resonance-shape energy dependence is shown in Fig. 1
by dashed lines (marked ‘free’) for the reduced scattering ampli-
tude

f K −N(
√

s ) = 1

2

[
f K − p(

√
s ) + f K −n(

√
s )

]
(5)

which is appropriate for the interaction of K − mesons with sym-
metric nuclear matter. The imaginary part peaks about 25 MeV
below the K̄ N threshold, and the real part rapidly varies there
from weak attraction above to strong attraction below threshold.
While f K −N (

√
s ) at and near threshold is constrained by data that

serve to determine the parameters of the chiral model, the extrap-
olation to the subthreshold region suffers from ambiguities and
depends on the applied model [2]. The free-space reduced scat-
tering amplitude shown in Fig. 1 is quantitatively similar to the
corresponding K −N scattering amplitudes in other chirally moti-
vated models exhibited in Fig. 7 of Ref. [20].

Also shown in Fig. 1 is the energy dependence of two in-
medium versions of f K −N (

√
s,ρ = 0.5ρ0). One version, in dot-

dashed lines (marked ‘without SE’), follows Ref. [4] to require Pauli
blocking in the intermediate K̄ N states for ρ 
= 0. The resulting
f K −N exhibits now a resonance-like behavior about 20 MeV above
threshold, in agreement with Ref. [4]. The other version, in solid
lines (marked ‘with SE’), follows Ref. [21] to add self consistently
meson and baryon self energies in intermediate states, similarly
to Refs. [5,22]. The resulting in-medium f K −N is strongly energy

2 This version, labeled below CS30, produces two I = 0 S-matrix poles in the
neighborhood of the K̄ N threshold, the lower one at Re

√
s = 1398 MeV evolves

from the πΣ channel, the upper one at 1441 MeV – from the K̄ N channel, within
the range of values provided by NLO chiral calculations, e.g., Ref. [19].
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dependent below threshold, with a resonance-like behavior about
30 MeV below threshold. Similar results are obtained at full nu-
clear matter density ρ0 = 0.17 fm−3. We note that whereas the
two in-medium reduced amplitudes shown in the figure are close
to each other far below and far above threshold, they differ sub-
stantially at and near threshold. This applies also to the full ampli-
tudes since the form factors g(k) remain intact in the transition
from free-space to in-medium separable amplitudes. At thresh-
old, in particular, the real part of the ‘with SE’ amplitude is about
half of that ‘without SE’, corresponding to a depth −Re V K − (ρ0) ≈
40–50 MeV, in agreement with Ramos and Oset [5].

The c.m. reduced amplitudes are functions of
√

s. In the two-
body c.m. system �pK + �pN = 0, but in the K −–nucleus c.m. system
(approximately nuclear laboratory system) �pK + �pN 
= 0. Averaging
over angles yields (�pK + �pN )2 → (p2

K + p2
N ). For bound hadrons we

expand near threshold, neglecting quadratic terms in the binding
energies B K = mK − E K , BN = mN − EN :

√
s ≈ Eth − BN − B K − ξN

p2
N

2mN
− ξK

p2
K

2mK
, (6)

where ξN(K ) = mN(K )/(mN +mK ). For the square of the relative mo-
menta �k, �k′ in form factors g , Eq. (4), we again average on angles,
yielding

k2,k′2 → ξNξK

(
2mK

p2
N

2mN
+ 2mN

p2
K

2mK

)
. (7)

Replacing in Eqs. (6) and (7) the kinetic energy p2
K /(2mK ) in

the local density approximation by −B K − Re V K − (ρ) where
V K − = V K − + V c , and approximating the nucleon kinetic energy
p2

N/(2mN ) in the Fermi gas model by 23(ρ/ρ0)
2/3 MeV, Eq. (6)

becomes

√
s ≈ Eth − BN − ξN B K − 15.1

(
ρ

ρ0

)2/3

+ ξK Re V K −(ρ). (8)

The downward energy shift invoked by Eq. (8), with respect to Eth,
corresponds to that implied in the impulse approximation when
the many-body K̄ N amplitude evaluated at the threshold energy
Eth is replaced by the two-body amplitude at the c.m. energy

√
s.

Note its density dependence. In most of the subsequent discussion
it is used as is, although we also checked the effect of implement-
ing gauge invariance through the substitution

√
s → √

s − V c . We
note that gauge invariance was not implemented in the solution of
the free-space Lippmann–Schwinger equations for the underlying
chiral model of Ref. [17], nor in its in-medium extension displayed
in Fig. 1.

For completeness, we comment on the range of momenta k,k′
transcribed by Eq. (7). In naive applications to kaonic atoms where
one assumes pK ≈ 0, these momenta are due to Fermi motion, as
given by the first term on the r.h.s. of Eq. (7) which is bounded by
k(ρ0),k′(ρ0) ∼ 72 MeV, quite negligible compared to the momen-
tum dependence scale α = 639 MeV in model CS30. However, for
strongly attractive K − nuclear potentials, reaching depths of about
180 MeV in phenomenological studies [12], the second term on the
r.h.s. of Eq. (7) dominates, yielding k(ρ0),k′(ρ0) ∼ 276 MeV. These
momenta are nonnegligible, but they are well within the CS30 mo-
mentum dependence scale α = 639 MeV which emerged by fitting
to K − p low-energy data.

3. Kaonic atoms

We now apply the method outlined above to the interaction of
K − mesons with nuclei close to threshold, as a means of testing
the subthreshold chiral amplitude formalism against experimental
Fig. 2. K −–nuclear potentials for K − atoms of Ni. Dashed curves: derived self con-
sistently from in-medium CS30 amplitudes; solid curves: plus phenomenological
terms from global fits; dot-dashed curves: purely phenomenological DD potentials
from global fits.

results. A distinction was made in solving the KG equation (3) be-
tween proton and neutron densities, replacing F K −N (

√
s,ρ)ρ(r) by

F eff
K −N (

√
s,ρ)ρ(r), where

F eff
K −N(

√
s,ρ)ρ(r)

= F K − p(
√

s,ρ)ρp(r) + F K −n(
√

s,ρ)ρn(r), (9)

with ρp and ρn normalized to Z and N , respectively, and Z + N
= A. The reduced amplitudes f K − p and f K −n were evaluated at√

s given by Eq. (8), where the atomic binding energy B K was
neglected with respect to B N ≈ 8.5 MeV. A similar approximation
was made in Eq. (7) for k2,k′ 2. B K was also neglected with re-
spect to mK in Eq. (3). The corresponding potential was calculated
at each radial point for every target nucleus in the data base. Self
consistency was required in solving Eq. (8) with respect to Re V K − ,
i.e., the value of Re V K −(ρ) in the expression for

√
s and in the

form factors g had to agree with the resulting Re V K − (ρ).
Fig. 2 shows, as representative examples, several K −–Ni po-

tentials. The CS30 ‘with SE’ amplitudes, within the self consis-
tent procedure described above and without adjustable parame-
ters, yield the potential marked CS30. For Re V K − , similar depths to
within a few MeV are obtained using CS30 ‘without SE’ amplitudes.
Re V CS30

K − is twice deeper, −85 MeV with respect to −40 MeV,
than the shallow potential (not shown here) used in the kaonic
atom calculations of Ref. [23]. That shallow potential followed from
a threshold value f K −N (Eth,ρ), without going subthreshold. Yet,
Re V CS30

K − is not as deep as Re V DD
K − , where the density dependent

(DD) potential V DD
K − , also shown in the figure, represents the best

fit with χ2 = 103 for 65 data points obtained using purely phe-
nomenological DD potentials [12].

The density dependence of the chiral CS30 ‘with SE’ effective
scattering amplitude F eff

K −N , calculated self consistently for Ni, is

shown in Fig. 3. The increase of Re F eff
K −N (ρ) with density over the

nuclear surface region combined with the decrease of Im F eff
K −N(ρ)

is the underlying mechanism behind the compression and inflation
of successful phenomenological best-fit potentials such as V DD

K −
[13]. However, the decrease of Im F eff

K −N is unreasonably rapid,
leading in the lower part of Fig. 2 to the peculiar shape of Im V CS30−
K
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Fig. 3. Density dependence of the in-medium ‘with SE’ CS30 self consistent sub-
threshold amplitude F eff

K − N for Ni.

at the nuclear surface.3 A substantial K −N energy shift into the
subthreshold region is involved in the calculation of F eff

K −N , e.g.,
−40 MeV at 0.5ρ0 down to −60 MeV at ρ0 in Ni. For such far
subthreshold energies, the reduced amplitude Im f CS30

K −N , as seen in
Fig. 1, is too small to provide the absorptivity required by the
kaonic atom data. Note that these single-nucleon amplitudes do
not account for multi-nucleon absorption which becomes increas-
ingly important at subthreshold energies.

Fig. 2 also demonstrates the effect of adding adjustable ρ and
ρ2 terms to V CS30

K − , resulting in a best-fit potential V CS30+phen.

K −
with χ2 of 164. For the imaginary part, the depth −Im V CS30

K − (ρ0)

is substantially increased towards reaching −Im V DD
K − (ρ0), with a

weaker bulge now at the nuclear surface. For the real part, the
depth −Re V CS30

K − (ρ0) is also significantly increased from 85 MeV to
175 MeV, close to the phenomenological potential depth −Re V DD

K − .
Similar results, to within a few MeV, hold when starting from
the CS30 ‘without SE’ amplitudes and also when the substitution√

s → √
s − V c is made in the r.h.s. of Eq. (8). We note that the

phenomenological addition to both Im V CS30
K − and Re V CS30

K − is dom-
inated by ρ2 terms which are required by the fit procedure and
which are likely to represent K̄ N N absorptive and dispersive con-
tributions, respectively. The emerging phenomenology is similar to
that for Vπ− in pionic atom studies where theoretically motivated
single-nucleon contributions are augmented by phenomenological
ρ2 terms representing π N N processes [24]. More work is required
to justify microscopically the size of the ρ2 kaonic atom contribu-
tions suggested by the successful V CS30+phen.

K − .
Although our study of kaonic atoms focused on K −N s-wave

interaction models incorporating the subthreshold Λ(1405) res-
onance, we also checked whether p-wave contributions from
the subthreshold Σ(1385) resonance are sizable and, more im-
portantly, whether they could modify the pattern of V CS30

K − and

V CS30+phen.

K − established above. To this end we used the Σ(1385)-
based p-wave potential of Weise and Härtle [18] consisting of
resonance and background parts. While detailed account will be
given elsewhere, we assert that fits to kaonic atom data within
the present self-consistent procedure do not require substantial
p-wave contributions, and that V CS30

K − and V CS30+phen.

K − are robust
with respect to adding p waves.

3 No similar bulge at the nuclear surface appears if Im V CS30
K − is derived from CS30

‘without SE’ amplitudes, and Im V CS30
K − (ρ0) is then about twice that for the ‘with SE’

case shown in the figure.
Table 1
Binding energies B K and widths ΓK (in MeV) of 1s K − nuclear quasibound states,
calculated self consistently from Eq. (3) using in-medium ‘with SE’ CS30 amplitudes
F K − N (

√
s,ρ) within a dynamical RMF scheme [14,25]. Possible K −N N → Y N ρ2

contributions are excluded.

12C 16O 40Ca 90Zr 208Pb

B K 54.8 54.9 68.2 77.3 82.2
ΓK 11.7 11.4 9.8 9.4 8.6

4. K −–nuclear quasibound states

The threshold K −–nuclear potential V CS30
K − shown in Fig. 2 is

sufficiently attractive to generate K −–nuclear quasibound states.
However, since the potential is energy dependent, it has to be
calculated again self consistently for binding energies B K in the
expected range of tens of MeV. Calculations for 16O and 208Pb were
reported by Weise and Härtle [18] using a subthreshold extrapola-
tion√

s ≈ Eth − B K − V c (10)

for solving self consistently the K − KG equation within a local po-
tential approximation of a chiral-model K̄ N amplitude. The present
self consistency scheme is based on Eq. (8) for

√
s and Eq. (7) for

k2, as applied here to kaonic atoms, but without neglecting B K for
K − nuclear states. We thus solved the KG equation (3), requiring
self consistency explicitly for B K (and implicitly for Re V K − ) us-
ing Eqs. (7) and (8). Realistic RMF density distributions ρ(r) were
employed, within a fully dynamical calculation that allows the nu-
clear density to get polarized by the K − meson. In this dynamical
scheme, following Refs. [14,25], a RMF self consistency cycle is ap-
plied in which the K − meson solution serves further as a source in
the RMF equations of motion which are solved to produce a mod-
ified nuclear density that goes again into the K − meson KG equa-
tion. However, the present formulation differs fundamentally from
previous RMF calculations: here V K − is generated microscopically
from a two-body coupled channel chiral model and, furthermore,
energy and density dependencies are introduced directly through
the underlying K −N scattering amplitude.

Binding energies and widths calculated dynamically for the 1s
K − nuclear quasibound state in several nuclei across the periodic
table are listed in Table 1. The ‘with SE’ in-medium version of
the CS30 chiral model was used. Similar results are obtained for
the ‘without SE’ version, with slightly larger binding energies and
widths. The values of B K listed in the table are in close agree-
ment with binding energies calculated within a dynamical RMF
approach for nucleons and antikaons [25] when the K − nuclear
interaction is mediated exclusively by an ω vector field, with the
same pure-F SU(3) coupling used in chiral models. The listed B K

values are smaller by 10–30 MeV than those calculated statically
in Ref. [18]. We checked that applying the gauge-invariant substi-
tution

√
s → √

s − V c in the r.h.s. of Eq. (8) makes little difference
to the systematics of the binding energies and widths in Table 1,
increasing B K gradually between 1 MeV for 12C to 5 MeV for
208Pb. The real potential depths associated with the binding en-
ergies obtained here are of order 100 MeV (e.g. 110 MeV for the
converged Re V K − in 40Ca). They follow naturally from the strong
energy dependence of f K −N (

√
s,ρ) at and below threshold which

is incorporated within a genuinely self consistent and dynamical
calculation of kaonic nuclei. The values of f K −N (Eth,ρ), which for
in-medium ‘with SE’ imply Re V K − (ρ0) ≈ −50 MeV, are of no rel-
evance to the actual binding energies of K − nuclear quasibound
states.

The calculated widths ΓK listed in Table 1 represent only
K −N → πY absorption processes that are accounted for by the
coupled channels chiral model without allowing for multinucleon
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Table 2
Binding energies B K and widths ΓK (in MeV) of the 1s K − nuclear quasibound state
in 16O, calculated self consistently from Eq. (3) using in-medium CS30 amplitudes
F K − N (

√
s,ρ) within a static RMF scheme for various prescriptions of treating

√
s.

Unless stated to the contrary, the CS30 version is ‘without SE’. Possible K −N N →
Y N ρ2 contributions are excluded.

Eq. (10) Eq. (8) − V c Eq. (8) Eq. (8) + SE +p waves

B K 58.2 53.0 51.9 51.2 54.2
ΓK 49.8 21.6 19.0 11.8 12.1

absorption modes. They are relatively small, of order 10 MeV, re-
flecting the proximity of the πΣ thresholds which suppresses the
major decay modes available for a K − meson on a single nucleon.
The sensitivity of the width calculation to the precise form of in-
medium subthreshold extrapolation of

√
s is demonstrated by five

separate static calculations of the K − 1s quasibound state in 16O
listed in Table 2. The first three calculations use the CS30 ‘with-
out SE’ version of the in-medium chiral model. The first one uses
Eq. (10) for self consistency in the solution of the KG equation,
mocking up as much as possible within our model the calculation
by Weise and Härtle [18]. The next two calculations use Eq. (8)
which shifts

√
s further down with respect to where Eq. (10) shifts

it, reducing ΓK from about 50 MeV to about 20 MeV. The effect of
subtracting V c in the r.h.s. of Eq. (8), which yields the (B K ,ΓK )
values of the column marked ‘Eq. (8) − V c ’, is seen to be mi-
nor by comparing with the third (B K ,ΓK ) column. The last two
calculations also use Eq. (8) for self consistency, but the CS30 in-
medium version ‘without SE’ is replaced by ‘with SE’ which brings
the calculated value of ΓK further down to near its value in the dy-
namical calculation reported in Table 1. The last column includes
also a Σ(1385) p-wave contribution given in Ref. [18]. Its effect is
found to be rather small since

√
s is well below the peak of the

Σ(1385) resonance. A more detailed account of K − quasibound
state calculations incorporating p waves will be given elsewhere.

In addition to the K −N → πY single-nucleon induced widths
of K − quasibound states which are calculable from given in-
medium chiral models and which were shown above to be quite
model dependent, there are also sizable two-nucleon absorption
processes K −N N → Y N with considerably lower thresholds that
contribute additional widths of order 40 MeV [14,18,25]. These ab-
sorption processes could be simulated by adding energy dependent
imaginary ρ2 terms suggested by the (CS30 + phen.) potential
for kaonic atoms together with the associated dispersive real ρ2

terms. This requires further consideration.

5. Conclusion

In conclusion, we have shown within in-medium extensions of
the chirally motivated coupled-channel separable-interaction CS30
model [17] how to incorporate the strong energy and density de-
pendence of the K −N scattering amplitude F K −N (

√
s,ρ), at and

below threshold, into a self consistent evaluation of the SE op-
erator ΠK (ωK ,ρ) for kaonic atoms. The procedure adopted here
is sufficiently general to be applied within in-medium exten-
sions of other chirally motivated interaction models. Our calcu-
lations demonstrate that kaonic atom data probe the subthresh-
old regime of the in-medium K −N scattering amplitude. The two
in-medium extensions of CS30 considered in the present work
produce parameter-free K − nuclear potentials for kaonic atoms
which are similar to each other, with depths −Re V CS30

K − (ρ0) =
(85 ± 5) MeV and −Im V CS30

K − (ρ0) = (20 ± 10) MeV evaluated at
the center of a typical medium-weight nucleus such as Ni. Pre-
liminary calculations using the Tomozawa–Weinberg lowest order
chiral interaction term, including the new SIDDHARTA 1s level
shift and width in kaonic hydrogen [26] produce similar results.
The sharp decrease of Im f K −N towards the πΣ threshold is
reflected in rapid decrease of Im F eff

K −N with increased density.
Therefore absorption processes beyond a single nucleon mech-
anism must be added together with a possible dispersive real
term. Indeed to achieve truly low χ2 values for K − atoms, phe-
nomenological potential terms had to be added, leading to in-
creased V K − depths, i.e., −Re V CS30+phen.

K − (ρ0) = (180±5) MeV and

−Im V CS30+phen.

K − (ρ0) = (70 ± 20) MeV. These dominantly ρ2 terms
could represent K −N N processes outside of the present single-
nucleon chiral model.

K − nuclear quasibound states generated by in-medium exten-
sions of CS30 were also calculated within a self consistent scheme.
Potential depths −Re V K − (ρ0) of order 100 MeV were obtained
for both extensions used, exceeding somewhat the depths de-
rived for kaonic atoms. This indicates a moderate state, or energy
dependence of ΠK (ωK ,ρ0). The similarity of the results for the
two in-medium extensions used here is in striking contrast to
the large difference in their Re f K −N values at threshold, as can
be judged from Fig. 1. Implementing additional phenomenological
terms within K − nuclear quasibound calculations is likely to re-
sult in B K values higher than 100 MeV. This topic deserves further
consideration.

Our calculations provide for the first time a microscopic link
between shallow K − nuclear potentials [5,23] obtained from
threshold K −N interactions and phenomenological deep ones de-
duced from kaonic atom data [13,14]. In future work, p-wave
K̄ N subthreshold amplitudes associated with the Σ(1385) reso-
nance will be explored in detail, to confirm the secondary role
played by these amplitudes in our preliminary extended studies
of kaonic atoms4 and in studies of quasibound K − nuclear states
[18,25].
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