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Binding energies and widths of three-body K̄ N N , and of four-body K̄ N N N and K̄ K̄ N N nuclear quasi-
bound states are calculated in the hyperspherical basis, using realistic N N potentials and subthreshold
energy dependent chiral K̄ N interactions. Results of previous K − pp calculations are reproduced and
an upper bound is placed on the binding energy of a K −d quasibound state. A self-consistent handling of
energy dependence is found to restrain binding, keeping the calculated four-body ground-state binding
energies to relatively low values of about 30 MeV. The lightest strangeness −2 particle-stable K̄ nuclear
cluster is most probably K̄ K̄ N N . The calculated K̄ N → πY conversion widths range from approximately
30 MeV for the K̄ N N N ground state to approximately 80 MeV for the K̄ K̄ N N ground state.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Unitarized coupled-channel chiral dynamics in the strangeness
S = −1 sector, constrained by fitting to K −p low-energy and
threshold data, gives rise to a (K̄ N)I=0 s-wave quasibound state
(QBS), as detailed in recent works [1,2]. The relationship of this
QBS to the observed Λ(1405) resonance, which was predicted
long ago by Dalitz and Tuan [3] within a phenomenological
study of K̄ N–πΣ coupled channels, has been recently reviewed
by Hyodo and Jido [4]. With that strong (K̄ N)I=0 interaction,
K̄ mesons are expected to bind to nuclear clusters beginning with
the (K̄ N N)I=1/2 Jπ = 0− QBS, loosely termed K − pp. While several
few-body calculations confirmed that K −pp is bound, as reviewed
in Ref. [5], we here focus on those calculations using chiral interac-
tion models in which the strong subthreshold energy dependence
of the input K̄ N interactions, essential in K̄ nuclear few-body
calculations, is under sound theoretical control. Such calculations
yield binding energies in the range B(K − pp) ∼ 10–20 MeV [6,7],
in contrast to values of 100 MeV or more obtained upon relegating
peaks observed in final-state Λp invariant-mass spectra from FIN-
UDA [8] and DISTO [9] to the QBS decay K − pp → Λp. To reinforce
this discrepancy we note that none of the other published K − pp
calculations based on K̄ N phenomenology [10–13] managed to get
as large K − pp binding energy as 100 MeV.
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Given this unsettled state of affairs for K −pp, it is desirable
to provide chiral model predictions for heavier K̄ nuclear clusters
starting with four-body systems and, in particular, to study the on-
set of binding for S = −2 clusters.1 A good candidate is K̄ K̄ N N
which of all four-body K̄ nuclear clusters has the largest number
of K̄ N bonds (four out of six). Furthermore, for the I = 0, Jπ = 0+
lowest energy QBS, and limiting the nuclear isospin to IN = 1 cor-
responding to the dominant s-wave N N configuration, this QBS has
the most advantageous I K̄ N = 0,1 composition of V (I)

K̄ N
, 3÷1 in fa-

vor of the strong V (0)

K̄ N
, same as in K − pp.

In this Letter we present fully four-body nonrelativistic calcu-
lations of the K̄ nuclear clusters K̄ N N N and K̄ K̄ N N in the hy-
perspherical basis. Realistic N N interactions and effective sub-
threshold K̄ N interactions derived within a chiral model [15] are
used. The energy dependence of the subthreshold K̄ N interactions
is treated self consistently, extending a procedure suggested and
practised in Refs. [16–18]. This provides a robust mechanism to re-
strain the calculated binding energies of K̄ nuclear clusters. Our
calculations in the three-body sector reproduce the K − pp calcula-
tions of Doté et al. [6] and provide an upper bound on the binding
energy of a K −d Jπ = 1− QBS. In the four-body sector we find
binding energies close to 30 MeV, in strong disagreement with pre-
dictions of over 100 MeV made in phenomenological, non-chiral
models for K̄ N N N [19] and K̄ K̄ N N [20,21].

1 We disregard the K̄ K̄ N QBS which was calculated within a chiral interaction
model to practically coincide with the K̄ + (K̄ N)I=0 threshold [14].
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2. Input and methodology

In this section we (i) briefly review the hyperspherical basis in
which K̄ -nuclear cluster wavefunctions are expanded and in which
calculations of ground-state energies are done, (ii) specify the two-
body N N , K̄ N , K̄ K̄ input interactions, and (iii) discuss the choice of
K̄ N subthreshold energy to be used self consistently in the binding
energy calculations.

2.1. Hyperspherical basis

The hyperspherical-harmonics (HH) formalism is used here
similarly to its application in light nuclei [22] and recently in
four-quark clusters [23]. In the present case, the N-body wave-
function (N = 3,4) consists of a sum over products of isospin, spin
and spatial components, antisymmetrized with respect to nucle-
ons and symmetrized with respect to K̄ mesons. Focusing on the
spatial components, translationally invariant basis functions are
constructed in terms of one hyper-radial coordinate ρ and a set
of 3N − 4 angular coordinates [ΩN ], substituting for N − 1 Jacobi
vectors. The spatial basis functions are of the form

Φn,[K ]
(
ρ, [ΩN ]) = R[N]

n (ρ)Y [N]
[K ]

([ΩN ]), (1)

where R[N]
n (ρ) are hyper-radial basis functions expressible in terms

of Laguerre polynomials and Y [N]
[K ] ([ΩN ]) are the HH functions in

the angular coordinates ΩN expressible in terms of spherical har-
monics and Jacobi polynomials. Here, the symbol [K ] stands for a
set of angular-momentum quantum numbers, including those of
L̂2, L̂z and K̂ 2, where K̂ is the total grand angular momentum
which reduces to the total orbital angular momentum for N = 2.
The HH functions Y [N]

[K ] are eigenfunctions of K̂ 2 with eigenvalues

K (K +3N −5), and ρKY [N]
[K ] are harmonic polynomials of degree K .

2.2. Interactions

For the N N interaction we used the Argonne AV4’ potential [24]
derived from the full AV18 potential by suppressing the spin-orbit
and tensor interactions and readjusting the central spin and isospin
dependent interactions. The AV4’ potential provides an excellent
approximation in s-shell nuclei to AV18. Its accuracy in K̄ nuclear
cluster calculations has been confirmed here by comparing our re-
sults for K −pp using AV4’ with those of Ref. [6] using AV18.

For K̄h interactions, where the hadron h is a nucleon or K̄ me-
son, following Refs. [14,15] we have used a generic finite-range
potential

V (I)
K̄h

(r;√s ) = V (I)
K̄h

(
√

s )exp
(−r2/b2) (2)

with b = 0.47 fm, where the superscript I denotes the isospin
of the K̄h pair and

√
s is the Mandelstam variable reducing to

the total energy in the two-body c.m. system. For K̄ K̄ , owing to
Bose–Einstein statistics for K̄ mesons, it is safe to assume that
V (I=0)

K̄ K̄
= 0 at low energies where s waves dominate. For I K̄ K̄ = 1,

V (I=1)

K̄ K̄
= 313 MeV was obtained in Ref. [14] by fitting to the chi-

ral leading-order Tomozawa–Weinberg s-wave scattering length. In
the absence of nearby thresholds of coupled channels, no signif-
icant energy dependence is anticipated for this weakly repulsive
K̄ K̄ interaction.

The K̄ N interaction is an effective interaction based on chiral
SU(3) meson–baryon coupled-channel dynamics with low-energy
constants fitted to near-threshold K − p scattering and reaction data
plus threshold branching ratios [15]. Its HNJH version [25] used
here reproduces, a-posteriori, within error bars the K − p scattering
length determined from the recent SIDDHARTA measurement of
the 1s level shift and width of kaonic hydrogen [26]. The energy-
dependent complex potential strengths V (I)

K̄ N
(
√

s ) were fitted in

Ref. [15] by third-order polynomials in
√

s in the range 1300 �√
s � 1450 MeV, covering the πΣ threshold at

√
s ≈ 1330 MeV,

as well as the K̄ N threshold with isospin-averaged value
√

sth =
1434.6 MeV. The attractive real parts Re V (I)

K̄ N
(
√

s ) become gradu-

ally weaker for subthreshold arguments
√

s � 1420 MeV, a prop-
erty shown below to be crucial in restraining the calculated bind-
ing energies of K̄ nuclear clusters. The absorptive imaginary parts
Im V (I)

K̄ N
(
√

s ) that originate from K̄ N → πY conversion also be-
come weaker, but much faster, practically vanishing at the πΣ

threshold.

2.3. Energy dependence

The issue of energy dependence in near-threshold K̄ N interac-
tions deserves discussion. For a single K̄ meson bound together
with A nucleons we define an average K̄ N Mandelstam variable√

sav by

A
√

sav =
A∑

i=1

√
(E K + Ei)

2 − (�pK + �pi)
2, (3)

approximating it near threshold,
√

sth ≡ mN + mK = 1434.6 MeV,
by

A
√

sav ≈ A
√

sth − B − (A − 1)B K −
A∑

i=1

(�pK + �pi)
2/2Eth, (4)

where B is the total binding energy of the system and B K = −E K .
Note that all the terms on the r.h.s. following AEth are negative
definite, so that

√
sav ≈ √

sth + δ
√

s with δ
√

s < 0. Hence, the
relevant two-body energy argument of V K̄ N resides in the sub-
threshold region, forming a continuous distribution. The state of
the art in non-Faddeev K̄ nuclear calculations is to replace this
distribution by an expectation value taken in the calculated QBS
[6,16–18]. Transforming squares of momenta in (4) to kinetic en-
ergies, the following expression is derived:

〈δ√s 〉 = − B

A
− A − 1

A
B K − ξN

A − 1

A
〈T N:N〉

− ξK

(
A − 1

A

)2

〈T K 〉, (5)

where ξN(K ) ≡ mN(K )/(mN +mK ), T K is the kaon kinetic energy op-
erator in the total c.m. frame and T N:N is the pairwise N N kinetic
energy operator in the N N pair c.m. system. Eq. (5) refines the pre-
scription 〈δ√s 〉 = −ηB K , with η = 1,1/2, used in the two types
of K − pp variational calculations in Ref. [6]. In the limit A � 1,
it agrees with the nuclear-matter expression given in Ref. [16] for
use in kaonic atoms and K̄ nuclear quasibound states.

A similar procedure is applied to the K̄ K̄ N N system by sum-
ming up the four pairwise K̄ N

√
s contributions and expanding

about
√

sth:

〈δ√s 〉 = −1

2

(
B + ξN〈T N:N〉 + ξK 〈T K :K 〉), (6)

where T K :K is the pairwise K̄ K̄ kinetic energy operator in the K̄ K̄
pair c.m. system. Eqs. (5) and (6) provide a self-consistency cycle
in K̄ nuclear cluster calculations by requiring that the expectation
value 〈δ√s 〉 derived from the solution of the Schroedinger equa-
tion agrees with the input value δ

√
s used for V K̄ N (

√
s ). This is

demonstrated in Fig. 1 for the lowest K̄ K̄ N N configuration, with
I = 0, Jπ = 0+ . Its ground-state (g.s.) energy Eg.s. , calculated upon
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Fig. 1. Self-consistency construction in (K̄ K̄ N N)I=0, Jπ =0+ binding-energy calculations. The upper (red) and lower (blue) curves show calculated values of Eg.s. and 〈δ√s 〉
from Eq. (6), respectively, vs. input δ

√
s values. The points connected by a vertical dashed line are the self-consistent values of Eg.s. and 〈δ√s 〉, the latter is obtained by the

intersection of the dashed diagonal in the left-low corner with the lower (blue) curve. (For interpretation of the references to color, the reader is referred to the web version
of this Letter.)
suppressing Im V K̄ N , is shown by the upper (red) curve as a func-
tion of the input δ

√
s. As one goes further down beginning ap-

proximately 15 MeV below threshold, the K̄ N effective interaction
from Ref. [15] becomes gradually weaker, resulting in less bind-
ing energy. In this subthreshold energy range the expectation val-
ues 〈−δ

√
s 〉, calculated from Eq. (6) by solving the Schroedinger

equation, also decrease upon increasing the input −δ
√

s values
as shown by the lower (blue) curve. This allows to locate a self-
consistent value 〈δ√s 〉 by drawing a diagonal to the lower curve
and connecting it by a vertical line to the upper curve to identify
the associated self-consistent value of Eg.s. . For (K̄ K̄ N N)I=0, Jπ =0+ ,
this construction yields a self-consistent value 〈δ√s 〉 = −46 MeV
and a corresponding value Eg.s.(〈δ√s 〉) = −32.1 MeV. If the en-
ergy dependence of V K̄ N (

√
s ) were neglected, and V K̄ N (

√
sth ) cor-

responding to δ
√

s = 0 were used instead, a considerably stronger
binding would have emerged: Eg.s.(δ

√
s = 0) = −43.0 MeV.

3. Results and discussion

We now present the results of self-consistent three-body and
four-body calculations of K̄ and K̄ K̄ nuclear clusters. The three-
body calculations have been tested by comparing with similar cal-
culations for K −pp [6].

For a K̄ nuclear cluster with global quantum numbers I , L, S ,
Jπ , the potential and kinetic energy matrix elements were eval-
uated in the HH basis. The interactions specified in Section 2.2
conserve L and S , the latter is given by the nuclear spin SN .
Since no L �= 0 QBS are likely to become particle stable upon
switching off Im V K̄ N , we limit our considerations to L = 0, re-
sulting in J = S = SN with parity ± for even/odd number of K̄
mesons, respectively. Although the total isospin I is conserved by
these charge-independent interactions, the isospin dependence of
V K̄ N induces �IN = 1 nuclear charge–exchange transitions, so that
the nuclear isospin IN need not generally be conserved. Suppress-
ing Im V K̄ N , the g.s. energy Eg.s. was calculated in a model space
spanned by HH basis functions with eigenvalues K � Kmax. Self-
consistent calculations were done for

√
s from the K̄ N threshold

down to 80 MeV below, at which value the error incurred by the
near-threshold approximation (4) is only 2.4 MeV. Self consistency
in δ

√
s was reached after typically five cycles. The convergence of

binding energy calculations for particle-stable g.s. configurations
is shown in Fig. 2 as a function of Kmax. With the exception of
the (K̄ N N N)I=1 cluster, good convergence was reached for values
of Kmax ≈ 30–40. The poorer convergence for (K̄ N N N)I=1 is ap-
parently due to its proximity to the (K̄ N N)I=1/2 + N threshold.
Asymptotic values of Eg.s. were found by fitting the constants C
and γ of the parametrization

E(Kmax) = Eg.s. + C

Kγ
max

(7)

to values of E(Kmax) calculated for sufficiently high values of Kmax.
The accuracy reached is better than 0.1 MeV in the three-body cal-
culations and about 0.2 MeV in the four-body calculations.

The conversion width Γ was then evaluated through the ex-
pression

Γ = −2〈Ψg.s.| ImVK̄ N |Ψg.s.〉, (8)

where VK̄ N sums over all pairwise K̄ N interactions. Since
|ImVK̄ N | 
 |ReVK̄ N |, this is a reasonable approximation for the
width. The dependence of the calculated width Γ of K̄ nuclear
clusters on the input δ

√
s value used for the subthreshold K̄ N

energy is demonstrated in Fig. 3 for the same K̄ nuclear clus-
ters depicted in Fig. 2. The width is seen almost invariably to
decrease upon increasing −δ

√
s, i.e. upon going deeper below

threshold. This is similar to the dependence of Eg.s. on the input
δ
√

s, as displayed for (K̄ K̄ N N)I=0 in Fig. 1. It is worth noting that
the calculated widths of the single-K̄ nuclear systems are clus-
tered roughly in a range of 30–40 MeV. Given a calculated width
ΓK̄ N = 43.6 MeV for the underlying (K̄ N)I=0 QBS, a scale of Γ

(single K̄ ) approximately 40 MeV appears quite natural. In con-
trast, the width calculated for the double-K̄ system (K̄ K̄ N N)I=0 is
about twice larger, approximately 80 MeV.

In Table 1 we compare results of the present work for (K̄ N)I=0
and (K̄ N N)I=1/2 QBS with those by Doté et al. [6]. Our (K̄ N)I=0
calculation reproduces that of Ref. [14] and agrees with that in
Ref. [6] to within 0.1 MeV out of binding energy B ≈ 11.5 MeV
and 0.2 MeV out of width Γ ≈ 43.7 MeV, a precision of better
than 1%. We note that this Λ(1405)-like QBS is bound considerably
weaker than a QBS required by construction to reproduce Λ(1405)

nominally, with BΛ(1405) ≈ 27 MeV [19]. For a more complete dis-
cussion of this point we refer to [15].
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Fig. 2. Ground-state energies of K̄ nuclear clusters, calculated self consistently, as a function of Kmax. The dashed lines show extrapolation according to Eq. (7).

Fig. 3. Conversion widths Γ of K̄ nuclear clusters calculated from Eq. (8) as a function of δ
√

s. The widths appropriate to the self-consistent values 〈δ√s 〉 are denoted on
each one of the curves.

Table 1
Comparison of K̄ N and K̄ N N QBS calculations, BGL (present) vs. DHW [6].

QBS I, Jπ Ref. 〈δ√s 〉 [MeV] B [MeV] Γ [MeV] B K [MeV] rNN [fm] rK N [fm]
K̄ N 0, 1

2
−

BGL −11.4 11.4 43.6 11.4 – 1.87
DHW −11.5 11.5 43.8† 11.5 – 1.86

K̄ N N 1
2 ,0− BGL −43 15.7 41.2 35.5 2.41 2.15

DHW −39 16.9 47.0 38.9 2.21 1.97
& IN = 1 BGL −35 11.0 38.8 27.9 2.33 2.21

DHW −31 12.0 44.8 31.0 2.13 2.01

† We thank Dr. A. Doté for communicating to us this width value.
For K̄ N N with I = 1/2 and Jπ = 0− , loosely termed K − pp,
we compare the present calculation with the type-I HNJH-versed
DHW variational calculation [6] for which the implied effective
〈δ√s 〉 value is close to our self-consistent 〈δ√s 〉 value. From
their type-I,II calculations one concludes that δB/〈δ√s 〉 ≈ 0.24,
so that our binding energy value B should come out smaller
by approximately 1 MeV than their listed type-I B . The remain-
der 0.2 MeV of the 1.2 MeV difference between rows 3 and 4
in the table is attributed to using slightly different N N interac-
tions: AV4’ here, AV18 in Ref. [6]. Rows 5 and 6 of the table
demonstrate the effect of limiting the model space to IN = 1,
compatible with the dominant s-wave N N configuration. This re-
sults in a decrease of the calculated binding energy by 4.8 ±
0.1 MeV. The 1 MeV difference between rows 5 and 6 is con-
sistent with the estimate made above for δB/〈δ√s 〉, with no
room within N N s waves for any marked difference arising from
the difference between using AV4’ (BGL) and AV18 (DHW). Fi-
nally, the differences of order 10–15% between the two width
calculations, and between the two r.m.s. distance calculations,
reflect the sensitivity of these entities to details of the three-
body wavefunction, particularly through the effective 〈δ√s 〉 value
used.
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Table 2
Results of K̄ N N N and K̄ K̄ N N QBS calculations.

QBS I, Jπ 〈δ√s 〉 [MeV] B [MeV] Γ [MeV] B K [MeV] rNN [fm] rN K [fm] rK K [fm]
K̄ N N N 0, 1

2
+ −61 29.3 32.9 36.6 2.07 2.05 –

1, 1
2

+ −36 18.5 31.0 21.0 2.33 2.55 –
K̄ K̄ N N 0,0+ −46 32.1 80.5 33.6 1.84 1.88 2.31
& V K̄ K̄ = 0 −52 36.1 83.2 37.9 1.71 1.70 2.01
We have also searched for a K̄ N N QBS with I = 1/2 and
Jπ = 1− , loosely termed K −d. The possibility of a QBS with these
quantum numbers has hardly been discussed in the literature, ap-
parently since it was realized from the very beginning [27] that
K −d is less exposed than K −pp, by a ratio close to 1 ÷ 3, to
the strongly attractive V (0)

K̄ N
interaction. We are not aware of any

genuine three-body calculation for K −d.2 Our calculations did not
produce any I = 1/2, Jπ = 1− QBS below the (K̄ N)I=0 + N thresh-
old, i.e. with total binding energy exceeding 11 MeV. Whether or
not such a QBS exists above the (K̄ N)I=0 + N threshold is an open
question which cannot be resolved within the present HH calcula-
tions that normally converge at the lowest energy state for given
quantum numbers.

In Table 2 we present new results for K̄ N N N and K̄ K̄ N N
QBS. The first two rows concern the K̄ N N N system essentially
based on the IN = 1/2 mirror nuclei 3H and 3He which are
bound by 8.99 MeV in this calculation. The K̄ nuclear interac-
tion splits the two resultant I = 0,1 K̄ N N N QBS such that the
I = 0 QBS is the lower of the two. The 11 MeV isospin split-
ting is small compared to the approximately 30 MeV conversion
width of each of these states. We note that the I = 0 QBS is
bound weakly compared to the tight binding over 100 MeV pre-
dicted for it by Akaishi and Yamazaki [19]. Its spatial dimensions,
with interparticle distances all exceeding 2 fm, also do not in-
dicate a very tight structure. The imposition of self-consistency
in the binding energy calculation is responsible for the rela-
tively low value B(K̄ N N N)I=0 = 29.3 MeV, compared to a consid-

erably higher value B(K̄ N N N)
δ
√

s=0
I=0 = 42.1 MeV upon using the

threshold K̄ N interaction. Higher values B(K̄ N N N)I=0,1 would also
have been obtained had we used the self-consistency requirement
〈δ√s 〉 = −B K [6] which for K −pp gave a value of B close to the
one found by using (5), see Table 1.

The last two rows of Table 2 report on the S = −2 (K̄ K̄ N N)I=0
QBS which has been highlighted as a possible gateway to kaon
condensation in self-bound systems, given its large binding en-
ergy over 100 MeV predicted by Yamazaki et al. [20]. Our calcu-
lated value B = 32.1 MeV is comparable with that for the S = −1
(K̄ N N N)I=0 QBS, and is a factor of two larger than for the low-
est K̄ N N QBS with I = 1/2 and Jπ = 0− . Note, however, that
(K̄ K̄ N N)I=0 is bound by less than 10 MeV with respect to the
threshold for decay to a pair of (K̄ N)I=0 Λ(1405)-like QBS. This
apparent relatively weak binding of (K̄ K̄ N N)I=0 is owing to the
restraining effect of handling self consistently the energy depen-
dent K̄ N interaction. Finally, the last row of the table shows what
happens when the repulsive V K̄ K̄ is switched off. The effect is
mild, increasing B by only 4 MeV. Nevertheless, inspection of the
r.m.s. distances in (K̄ K̄ N N)I=0 reveals a more compact structure
than (K̄ N N N)I=0, which is also reflected by the large value of
Γ (K̄ K̄ N N)I=0.

2 However, very recently Oset et al. [28] made an estimate within the Fixed Cen-
ter Approximation for a K −d QBS with total binding energy B = 9 MeV and conver-
sion width Γ ≈ 30 MeV. Alternatively, extrapolating below threshold the best edu-
cated guess for the scattering length aK −d [29] yields an estimate of B = 6.6 MeV
and Γ ≈ 29 MeV.
4. Conclusion

In conclusion, we have performed calculations of three-body
K̄ N N and four-body K̄ N N N and K̄ K̄ N N QBS systems. Using practi-
cally identical interactions to those used in the K −pp chiral model
calculations by Doté et al. [6], we were able to test our calcu-
lations for this QBS against theirs. Given the low binding energy
B(K − pp) ≈ 16 MeV and sizable conversion width Γconv(K − pp) ≈
40 MeV, it might be difficult to identify such a near-threshold QBS
unambiguously in ongoing experimental searches. This situation
gets further complicated by two additional factors: (i) the pos-
sible presence of a near-threshold K −d QBS in the same charge
state as the one in which K − pp is searched on, and (ii) additional
two-nucleon absorption widths �Γabs accounting for the poorly
understood non-pionic processes K̄ N N → Y N . For K − pp we note
the estimate �Γabs(K − pp) � 10 MeV [6]. Appreciable p-wave con-
tributions to the K − pp width were also suggested in Ref. [6],
but doubts have been recently expressed on the effectiveness of
a p-wave K̄ N interaction by testing its role in kaonic atoms [16].
Altogether, the widths of K̄ N N QBS are likely to be dominated by
their conversion widths.

For the four-body QBS systems K̄ N N N and K̄ K̄ N N we found
relatively modest binding, of order 30 MeV in both, with conver-
sion widths ranging from about 30 MeV for each of the K̄ N N N
QBS to about 80 MeV for the lowest K̄ K̄ N N QBS. These systems,
although somewhat more compact than K − pp, are not as compact
as suggested by Yamazaki et al. [19–21]. Their K̄ N r.m.s. distances
do not fall below that of the Λ(1405)-like K̄ N QBS, and their
N N r.m.s. distances exceed that of nuclear matter (≈ 1.7 fm). For
a conservative estimate of the absorption widths �Γabs in these
systems, we count the number of nucleons n available to join a
given K̄ N correlated pair, one pair per each K̄ . This gives twice
as large n for each of the four-body systems (n = 2) with re-
spect to K − pp (n = 1). Hence, neglecting three-nucleon absorption,
�Γabs(K̄ N N N, K̄ K̄ N N) ∼ 20 MeV.

The energy dependence of the subthreshold K̄ N effective in-
teraction, constructed in Ref. [15] within a coupled channel chiral
model, was found to be instrumental in restraining the binding
of the four-body K̄ nuclear clusters through the self-consistency
requirement derived here for these light systems. A strong K̄ N
interaction operates to form tightly bound compact structures,
necessarily accompanied by large kinetic energies. This leads by
Eqs. (5) and (6) to substantial values of the energy shift 〈δ√s 〉
which give rise to weaker input K̄ N interactions, resulting in less
binding as demonstrated in Fig. 1 for K̄ K̄ N N . However, dispersive
contributions to the binding energy of QBS cannot be excluded. Re-
cent fits to kaonic atoms [16,17] suggest that �Bdisp ∼ �Γabs, so
that these binding energies could reach values B(K − pp) ∼ 25 MeV
and B(K̄ N N N, K̄ K̄ N N) ∼ 50 MeV. For heavier K̄ -nuclear clusters
where the nuclear density is closer to nuclear-matter density, a re-
straining mechanism similar to the one discussed here has been
shown to be operative [18]. Other restraining, or saturation mecha-
nisms are likely to be operative such as the increased K̄ K̄ repulsion
upon adding K̄ mesons [30]. It is therefore quite unlikely that
strange dense matter is realized through K̄ mesons as argued re-
peatedly by Yamazaki et al. [20,21].
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