Dull, weak and nested solitaire games are important classes of parity games,
capturing, among others, alternation-free mu-calculus and ECTL* model checking
problems. These classes can be solved in polynomial time using dedicated
algorithms. We investigate the complexity of Zielonka's Recursive algorithm for
solving these special games, showing that the algorithm runs in O(d (n + m)) on
weak games, and, somewhat surprisingly, that it requires exponential time to
solve dull games and (nested) solitaire games. For the latter classes, we
provide a family of games G, allowing us to establish a lower bound of 2^(n/3).
We show that an optimisation of Zielonka's algorithm permits solving games from
all three classes in polynomial time. Moreover, we show that there is a family
of (non-special) games M that permits us to establish a lower bound of 2^(n/3),
improving on the previous lower bound for the algorithm.Comment: In Proceedings GandALF 2013, arXiv:1307.416