799 research outputs found

    Reproducibility of liquid oxygen impact test results

    Get PDF
    Results for 12,000 impacts on a wide range of materials were studied to determine the reproducibility of the liquid oxygen impact test method. Standard deviations representing the overall variability of results were in close agreement with the expected values for a binomial process. This indicates that the major source of variability is due to the go - no go nature of the test method and that variations due to sampling and testing operations were not significant

    Computer simulation of the threshold sensitivity determinations

    Get PDF
    A computer simulation study was carried out to evaluate various methods for determining threshold stimulus levels for impact sensitivity tests. In addition, the influence of a number of variables (initial stimulus level, particular stimulus response curve, and increment size) on the apparent threshold values and on the corresponding population response levels was determined. Finally, a critical review of previous assumptions regarding the stimulus response curve for impact testing is presented in the light of the simulation results

    Destruct tests on scale model saturn i booster

    Get PDF
    Destructive testing of scale model saturn i launch vehicl

    Nonmonotonicity in sensitivity test data

    Get PDF
    Frequency of reactions for sensitivity test data - structural mechanic

    BRCA1 foci in normal S-phase nuclei are linked to interphase centromeres and replication of pericentric heterochromatin

    Get PDF
    Breast cancer–associated protein 1 (BRCA1) forms foci at sites of induced DNA damage, but any significance of these normal S-phase foci is unknown. BRCA1 distribution does not simply mirror or overlap that of replicating DNA; however, BRCA1 foci frequently abut sites of BrdU incorporation, mostly at mid-to-late S phase. Although BRCA1 does not overlap XIST RNA across the inactive X chromosome, BRCA1 foci position overwhelmingly in heterochromatic regions, particularly the nucleolar periphery where many centromeres reside. In humans and mice, including early embryonic cells, BRCA1 commonly associates with interphase centromere–kinetochore complexes, including pericentric heterochromatin. Proliferating cell nuclear antigen or BrdU labeling demonstrates that BRCA1 localizes adjacent to, or “paints,” major satellite blocks as chromocenters replicate, where topoisomerase is also enriched. BRCA1 loss is often associated with proliferative defects, including postmitotic bridges enriched with satellite DNA. These findings implicate BRCA1 in replication-linked maintenance of centric/pericentric heterochromatin and suggest a novel means whereby BRCA1 loss may contribute to genomic instability and cancer

    Remote Monitoring of Fish in Small Streams: A Unified Approach Using Pit Tags

    Get PDF
    Accurate assessments of fish populations are often limited by re-observation or recapture events. Since the early 1990s, passive integrated transponders (PIT tags) have been used to understand the biology of many fish species. Until recently, PIT applications in small streams have been limited to physical recapture events. To maximize recapture probability, we constructed PIT antenna arrays in small streams to remotely detect individual fish. Experiences from two different laboratories (three case studies) allowed us to develop a unified approach to applying PIT technology for enhancing data assessments. Information on equipment, its installation, tag considerations, and array construction is provided. Theoretical and practical definitions are introduced to standardize metrics for assessing detection efficiency. We demonstrate how certain conditions (stream discharge, vibration, and ambient radio frequency noise) affect the detection efficiency and suggest that by monitoring these conditions, expectations of efficiency can be modified. We emphasize the importance of consistently estimating detection efficiency for fisheries applications

    Chromophore supply modulates cone function and survival in retinitis pigmentosa mouse models.

    Get PDF
    Retinitis pigmentosa (RP) is an ocular disease characterized by the loss of night vision, followed by the loss of daylight vision. Daylight vision is initiated in the retina by cone photoreceptors, which are gradually lost in RP, often as bystanders in a disease process that initiates in their neighboring rod photoreceptors. Using physiological assays, we investigated the timing of cone electroretinogram (ERG) decline in RP mouse models. A correlation between the time of loss of the cone ERG and the loss of rods was found. To investigate a potential role of the visual chromophore supply in this loss, mouse mutants with alterations in the regeneration of the retinal chromophore, 11-cis retinal, were exam- ined. Reducing chromophore supply via mutations in Rlbp1 or Rpe65 resulted in greater cone function and survival in a RP mouse model. Conversely, overexpression of Rpe65 and Lrat, genes that can drive the regeneration of the chromophore, led to greater cone degeneration. These data suggest that abnormally high chromophore supply to cones upon the loss of rods is toxic to cones, and that a potential therapy in at least some forms of RP is to slow the turnover and/or reduce the level of visual chromophore in the retina

    Autism and the U.K. secondary school experience

    Get PDF
    This research investigated the self-reported mainstream school experiences of those diagnosed on the autistic spectrum compared with the typically developing school population. Existing literature identifies four key areas that affect the quality of the school experience for students with autism: social skills, perceived relationships with teaching staff, general school functioning, and interpersonal strengths of the young person. These areas were explored in a mainstream U.K. secondary school with 14 students with autism and 14 age and gender matched students without autism, using self-report questionnaires and semi-structured interviews. Quantitative analyses showed consistent school experiences for both groups, although content analysis of interview data highlighted some differences in the ways in which the groups perceive group work, peers, and teaching staff within school. Implications for school inclusion are discussed, drawing attention to how staff awareness of autism could improve school experience and success for students with autism attending mainstream schools

    Disruption in murine Eml1 perturbs retinal lamination during early development.

    Get PDF
    During mammalian development, establishing functional neural networks in stratified tissues of the mammalian central nervous system depends upon the proper migration and positioning of neurons, a process known as lamination. In particular, the pseudostratified neuroepithelia of the retina and cerebrocortical ventricular zones provide a platform for progenitor cell proliferation and migration. Lamination defects in these tissues lead to mispositioned neurons, disrupted neuronal connections, and abnormal function. The molecular mechanisms necessary for proper lamination in these tissues are incompletely understood. Here, we identified a nonsense mutation in the Eml1 gene in a novel murine model, tvrm360, displaying subcortical heterotopia, hydrocephalus and disorganization of retinal architecture. In the retina, Eml1 disruption caused abnormal positioning of photoreceptor cell nuclei early in development. Upon maturation, these ectopic photoreceptors possessed cilia and formed synapses but failed to produce robust outer segments, implying a late defect in photoreceptor differentiation secondary to mislocalization. In addition, abnormal positioning of MĂĽller cell bodies and bipolar cells was evident throughout the inner neuroblastic layer. Basal displacement of mitotic nuclei in the retinal neuroepithelium was observed in tvrm360 mice at postnatal day 0. The abnormal positioning of retinal progenitor cells at birth and ectopic presence of photoreceptors and secondary neurons upon maturation suggest that EML1 functions early in eye development and is crucial for proper retinal lamination during cellular proliferation and development
    • …
    corecore