223 research outputs found

    Magnetar-like Emission from the Young Pulsar in Kes 75

    Full text link
    We report detection of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be rotation-powered, has an inferred surface dipolar magnetic field of 4.9x10^13 G, higher than those of the vast majority of rotation-powered pulsars, but lower than those of the ~12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior, and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.Comment: 17 pages, 2 figures, accepted for publication in Science. Note: The content of this paper is embargoed until February 21, 200

    Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction

    Get PDF
    The clinical successes of chimeric antigen receptor (CAR)-T-cell therapy targeting cell surface antigens in B cell leukaemias and lymphomas has demonstrated the proof of concept that appropriately engineered T-cells have the capacity to destroy advanced cancer with long term remissions ensuing. Nevertheless, it has been significantly more problematic to effect long term clinical benefit in a solid tumour context. A major contributing factor to the clinical failure of CAR-T-cells in solid tumours has been named, almost interchangeably, as T-cell "dysfunction" or "exhaustion". While unhelpful ambiguity surrounds the term "dysfunction", "exhaustion" is canonically regarded as a pejorative term for T-cells. Recent understanding of T-cell developmental biology now identifies exhausted cells as vital for effective immune responses in the context of ongoing antigenic challenge. The purpose of this review is to explore the critical stages in the CAR-T-cell life-cycle and their various contributions to T-cell exhaustion. Through an appreciation of the predominant mechanisms of CAR-T-cell exhaustion and resultant dysfunction, we describe a range of engineering approaches to improve CAR-T-cell function

    Timing behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kestevan 75

    Full text link
    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q=8.7+/- 2.5, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U~0142+61 and may have occurred in the SGR 1900+14. We also report a large increase in the timing noise of the source. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.Comment: 14 pages, 5 figures, Accepted for publication in the Astrophysical Journal. Incorporates changes from an anonymous referee; additional analysis and discussion include

    Exceptional flaring activity of the anomalous X-ray pulsar 1E 1547.0-5408

    Full text link
    (Abridged) We studied an exceptional period of activity of the anomalous X-ray pulsar 1E 1547.0-5408 in January 2009, during which about 200 bursts were detected by INTEGRAL. The major activity episode happened when the source was outside the field of view of all the INTEGRAL instruments. But we were still able to study the properties of 84 bursts detected simultaneously by the anti-coincidence shield of the spectrometer SPI and by the detector of the imager ISGRI. We find that the luminosity of the 22 January 2009 bursts of 1E 1547.0-5408 was > 1e42 erg/s. This luminosity is comparable to that of the bursts of soft gamma repeaters (SGR) and is at least two orders of magnitude larger than the luminosity of the previously reported bursts from AXPs. Similarly to the SGR bursts, the brightest bursts of 1E 1547.0-5408 consist of a short spike of ~100 ms duration with a hard spectrum, followed by a softer extended tail of 1-10 s duration, which occasionally exhibits pulsations with the source spin period of ~2 s. The observation of AXP bursts with luminosities comparable to the one of SGR bursts strengthens the conjecture that AXPs and SGRs are different representatives of one and the same source type.Comment: 9 pages, 10 figures, accepted to Astronomy & Astrophysic

    Chandra and RXTE Observations of 1E 1547.0-5408: Comparing the 2008 and 2009 Outbursts

    Full text link
    We present results from observations of the magnetar 1E 1547.0-5408 (SGR J1550-5418) taken with the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE) following the source's outbursts in 2008 October and 2009 January. During the time span of the Chandra observations, which covers days 4 through 23 and days 2 through 16 after the 2008 and 2009 events, respectively, the source spectral shape remained stable, while the pulsar's spin-down rate in the same span in 2008 increased by a factor of 2.2 as measured by RXTE. The lack of spectral variation suggests decoupling between magnetar spin-down and radiative changes, hence between the spin-down-inferred magnetic field strength and that inferred spectrally. We also found a strong anti-correlation between the phase-averaged flux and the pulsed fraction in the 2008 and 2009 Chandra data, but not in the pre-2008 measurements. We discuss these results in the context of the magnetar model.Comment: 4 figures, accepted for publication in Ap

    Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    Get PDF
    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar

    The Long-term Radiative Evolution of Anomalous X-ray Pulsar 1E 2259+586 after its 2002 Outburst

    Full text link
    We present an analysis of five X-ray Multi-Mirror Mission (XMM) observations of the anomalous X-ray pulsar (AXP) 1E 2259+586 taken in 2004 and 2005 during its relaxation following its 2002 outburst. We compare these data with those of five previous XMM observations taken in 2002 and 2003, and find the observed flux decay is well described by a power-law of index -0.69+/-0.03. As of mid-2005, the source may still have been brighter than preoutburst, and was certainly hotter. We find a strong correlation between hardness and flux, as seen in other AXP outbursts. We discuss the implications of these results for the magnetar model.Comment: 23 Pages, 4 figures, 3 tables, published on Ap

    High-speed, multi-colour optical photometry of the anomalous X-ray pulsar 4U 0142+61 with ULTRACAM

    Get PDF
    We present high-speed, multi-colour optical photometry of the anomalous X-ray pulsar 4U 0142+61, obtained with ULTRACAM on the 4.2-m William Herschel Telescope. We detect 4U 0142+61 at magnitudes of i'=23.7+-0.1, g'=27.2+-0.2 and u'>25.8, consistent with the magnitudes found by Hulleman et al.(2004) and hence confirming their discovery of both a spectral break in the optical and a lack of long-term optical variability. We also confirm the discovery of Kern & Martin (2002) that 4U 0142+61 shows optical pulsations with an identical period (~8.7 s) to the X-ray pulsations. The rms pulsed fraction in our data is 29+-8%, 5-7 times greater than the 0.2-8 keV X-ray rms pulsed fraction. The optical and X-ray pulse profiles show similar morphologies and appear to be approximately in phase with each other, the former lagging the latter by only 0.04+-0.02 cycles. In conjunction with the constraints imposed by X-ray observations, the results presented here favour a magnetar interpretation for the anomalous X-ray pulsars.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Analysis Of Economic Motives In The Individual Choice Of Educational Paths

    Get PDF
    The article explores economic motive forces that drive individuals to make their choices of educational paths. This research issue is relevant in equal measure to theory — the study of economic human behavior, and practice — the enhancement of human capital investment efficiency.The authors have developed an econometric model of individual choice decisions concerning educational paths. It was implemented with the software support and bolstered with the live data on over 5.5 thousand students. To analyze the values of rational economic expectancies in the choice of educational paths, the students’ preferences were compared to the optimal, economically feasible educational paths.The findings have shown that a choice of educational paths is chiefly made in line with the economic incentives. With respect to the analyzed sample, 66% of university applicants made their choices with regard to economic preferences. Higher expected earnings after graduation — 22% of the choices, and reduction in college tuition costs or education against the budget — 12%, are the most significant factors shaping optimal educational paths.We believe that one outcome from the research is the prospect of a national policy issue for human capital investment with due regard for students and university entrants’ expectancies
    • …
    corecore