5,858 research outputs found

    Parallelism for Quantum Computation with Qudits

    Full text link
    Robust quantum computation with d-level quantum systems (qudits) poses two requirements: fast, parallel quantum gates and high fidelity two-qudit gates. We first describe how to implement parallel single qudit operations. It is by now well known that any single-qudit unitary can be decomposed into a sequence of Givens rotations on two-dimensional subspaces of the qudit state space. Using a coupling graph to represent physically allowed couplings between pairs of qudit states, we then show that the logical depth of the parallel gate sequence is equal to the height of an associated tree. The implementation of a given unitary can then optimize the tradeoff between gate time and resources used. These ideas are illustrated for qudits encoded in the ground hyperfine states of the atomic alkalies 87^{87}Rb and 133^{133}Cs. Second, we provide a protocol for implementing parallelized non-local two-qudit gates using the assistance of entangled qubit pairs. Because the entangled qubits can be prepared non-deterministically, this offers the possibility of high fidelity two-qudit gates.Comment: 9 pages, 3 figure

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Desynchronization of pathological low-frequency brain activity by the hypnotic drug zolpidem.

    Get PDF
    Reports of the beneficial effects of the hypnotic imidazopyridine, zolpidem, described in persistent vegetative state^1, 2^ have been replicated recently in brain-injured and cognitively impaired patients^3-7^. Previous single photon emission computed tomography (SPECT) studies have suggested that sub-sedative doses of zolpidem increased regional cerebral perfusion in affected areas^5, 8^, implying enhanced neuronal metabolic activity; which has led to speculation that zolpidem 'reawakens' functionally dormant cortex. However, a neuronal mechanism by which this hypnotic drug affords benefits to brain injured patients has yet to be demonstrated. Here, we report the action of sub-sedative doses of zolpidem on neuronal network oscillatory activity in human brain, measured using pharmaco-magnetoencephalography (pharmaco-MEG). Study participant JP suffered a stroke in 1996, causing major damage to the left hemisphere that impaired aspects of both motor and cognitive function. Pharmaco-MEG analyses revealed robust and persistent pathological theta (4-10Hz) and beta (15-30Hz) oscillations within the lesion penumbra and surrounding cortex. Administration of zolpidem (5mg) reduced the power of pathological theta and beta oscillations in all regions of the lesioned hemisphere. This desynchronizing effect correlated well with zolpidem uptake (occurring approximately 40 minutes after acute administration) and was coincident with marked improvements in cognitive and motor function. Control experiments revealed no effect of placebo, while a structurally unrelated hypnotic, zopiclone, administered at a comparable dose (3.5mg) elicited widespread increases in cortical oscillatory power in the beta (15-30Hz) band without functional improvement. These results suggest that in JP, specific motor and cognitive impairments are related to increased low-frequency oscillatory neuronal network activity. Zolpidem is unique amongst hypnotic drugs in its ability to desynchronize such pathological low-frequency activity, thereby restoring cognitive function

    The Rotating Quantum Thermal Distribution

    Get PDF
    We show that the rigidly rotating quantum thermal distribution on flat space-time suffers from a global pathology which can be cured by introducing a cylindrical mirror if and only if it has a radius smaller than that of the speed-of-light cylinder. When this condition is met, we demonstrate numerically that the renormalized expectation value of the energy-momentum stress tensor corresponds to a rigidly rotating thermal bath up to a finite correction except on the mirror where there are the usual Casimir divergences.Comment: 8 pages, 2 PostScript figure

    Unsupervised machine learning of integrated health and social care data from the Macmillan Improving the Cancer Journey service in Glasgow

    Get PDF
    Background: Improving the Cancer Journey (ICJ) was launched in 2014 by Glasgow City Council and Macmillan Cancer Support. As part of routine service, data is collected on ICJ users including demographic and health information, results from holistic needs assessments and quality of life scores as measured by EQ-5D health status. There is also data on the number and type of referrals made and feedback from users on the overall service. By applying artificial intelligence and interactive visualization technologies to this data, we seek to improve service provision and optimize resource allocation.Method: An unsupervised machine-learning algorithm was deployed to cluster the data. The classical k-means algorithm was extended with the k-modes technique for categorical data, and the gap heuristic automatically identified the number of clusters. The resulting clusters are used to summarize complex data sets and produce three-dimensional visualizations of the data landscape. Furthermore, the traits of new ICJ clients are predicted by approximately matching their details to the nearest existing cluster center.Results: Cross-validation showed the model’s effectiveness over a wide range of traits. For example, the model can predict marital status, employment status and housing type with an accuracy between 2.4 to 4.8 times greater than random selection. One of the most interesting preliminary findings is that area deprivation (measured through Scottish Index of Multiple Deprivation-SIMD) is a better predictor of an ICJ client’s needs than primary diagnosis (cancer type).Conclusion: A key strength of this system is its ability to rapidly ingest new data on its own and derive new predictions from those data. This means the model can guide service provision by forecasting demand based on actual or hypothesized data. The aim is to provide intelligent person-centered recommendations. The machine-learning model described here is part of a prototype software tool currently under development for use by the cancer support community.Disclosure: Funded by Macmillan Cancer Support</p

    Pion Breather States in QCD

    Get PDF
    We describe a class of pionic breather solutions (PBS) which appear in the chiral lagrangian description of low-energy QCD. These configurations are long-lived, with lifetimes greater than 10310^3 fm/c, and could arise as remnants of disoriented chiral condensate (DCC) formation at RHIC. We show that the chiral lagrangian equations of motion for a uniformly isospin-polarized domain reduce to those of the sine-gordon model. Consequently, our solutions are directly related to the breather solutions of sine-gordon theory in 3+1 dimensions. We investigate the possibility of PBS formation from multiple domains of DCC, and show that the probability of formation is non-negligible.Comment: 9 pages, 4 figure

    Canonical Ensemble of Initial States Leading to Chiral Fluctuations

    Get PDF
    In energetic heavy ion collisions, if quark-gluon plasma is formed, its hadronization may lead to observable critical fluctuations, i.e., DCC formation. The strength and observability of these fluctuations depend on the initial state. Here we study the canonical ensemble of initial states of chiral fluctuations in heavy ion collisions and the probability to obtain observable domains of chiral condensates.Comment: 13 pages (figures included) Accepted for publication in Phys. Rev.

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter σ\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Charmonium suppression from purely geometrical effects

    Full text link
    The extend to which geometrical effects contribute to the production and suppression of the J/ψJ/\psi and qqˉq\bar{q} minijet pairs in general is investigated for high energy heavy ion collisions at SPS, RHIC and LHC energies. For the energy range under investigation, the geometrical effects referred to are shadowing and anti-shadowing, respectively. Due to those effects, the parton distributions in nuclei deviate from the naive extrapolation from the free nucleon result; fAAfNf_{A}\neq A f_{N}. The strength of the shadowing/anti-shadowing effect increases with the mass number. The consequences of gluonic shadowing effects for the xFx_F distribution of J/ψJ/\psi's at s=20\sqrt s =20 GeV, s=200\sqrt s =200 GeV and s=6\sqrt s =6 TeV are calculated for some relevant combinations of nuclei, as well as the pTp_T distribution of minijets at midrapidity for Nf=4N_f=4 in the final state.Comment: corrected some typos, improved shadowing ratio

    Lifetime of a Disoriented Chiral Condensate

    Get PDF
    The lifetime of a disoriented chiral condensate formed within a heat bath of pions is calculated assuming temperatures and densities attainable at present and future heavy-ion colliders. A generalization of the reduction formula to include coherent states allows us to derive a formula for the decay rate. We predict the half-life to be between 4 and 7 fm/c, depending on the assumed pion density. We also calculate the lifetime in the presence of higher resonances and baryons, which shortens the lifetime by at most 20%.Comment: 9 pages, 3 figures, REVTeX, Eq. (3) modifie
    corecore