49 research outputs found

    Mapping of Human Autoantibody Binding Sites on the Calcium-Sensing Receptor

    Get PDF
    Previously, we have demonstrated the presence of anti-calcium-sensing receptor (CaSR) antibodies in patients with autoimmune polyglandular syndrome type 1 (APS1), a disease that is characterized in part by hypoparathyroidism involving hypocalcemia, hyperphosphatemia, and low serum levels of parathyroid hormone. The aim of this study was to define the binding domains on the CaSR of anti-CaSR antibodies found in APS1 patients and in one patient suspected of having autoimmune hypocalciuric hypercalcemia (AHH). A phage-display library of CaSR peptides was constructed and used in biopanning experiments with patient sera. Selectively enriched IgG-binding peptides were identified by DNA sequencing, and subsequently, immunoreactivity to these peptides was confirmed in ELISA. Anti-CaSR antibody binding sites were mapped to amino acid residues 41–69, 114–126, and 171–195 at the N-terminal of the extracellular domain of the receptor. The major autoepitope was localized in the 41–69 amino acid sequence of the CaSR with antibody reactivity demonstrated in 12 of 12 (100%) APS1 patients with anti-CaSR antibodies and in 1 AHH patient with anti-CaSR antibodies. Minor epitopes were located in the 114–126 and 171–195 amino acid domains, with antibody reactivity shown in 5 of 12 (42%) and 4 of 12 (33%) APS1 patients, respectively. The results indicate that epitopes for anti-CaSR antibodies in the AHH patient and in the APS1 patients who were studied are localized in the N-terminal of the extracellular domain of the receptor. The present work has demonstrated the successful use of phage-display technology in the discovery of CaSR-specific epitopes targeted by human anti-CaSR antibodies. © 2010 American Society for Bone and Mineral Research

    Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    Get PDF
    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes

    Development of a Chromosomally Integrated Metabolite-Inducible Leu3p-α-IPM “Off-On” Gene Switch

    Get PDF
    Background: Present technology uses mostly chimeric proteins as regulators and hormones or antibiotics as signals to induce spatial and temporal gene expression. Methodology/Principal Findings: Here, we show that a chromosomally integrated yeast ‘Leu3p-a-IRM ’ system constitutes a ligand-inducible regulatory ‘‘off-on’ ’ genetic switch with an extensively dynamic action area. We find that Leu3p acts as an active transcriptional repressor in the absence and as an activator in the presence of a-isopropylmalate (a-IRM) in primary fibroblasts isolated from double transgenic mouse embryos bearing ubiquitously expressing Leu3p and a Leu3p regulated GFP reporter. In the absence of the branched amino acid biosynthetic pathway in animals, metabolically stable a-IPM presents an EC 50 equal to 0.8837 mM and fast ‘‘OFF-ON’ ’ kinetics (t 50ON = 43 min, t 50OFF = 2.18 h), it enters the cells via passive diffusion, while it is non-toxic to mammalian cells and to fertilized mouse eggs cultured ex vivo. Conclusions/Significance: Our results demonstrate that the ‘Leu3p-a-IRM ’ constitutes a simpler and safer system for inducible gene expression in biomedical applications

    Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP

    Get PDF
    We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P3.0E-04, odds ratio (OR)1.60; meta-P for rs38069333.1E-03), XBP1 (rs6005863, P3.6E-04, OR1.17; meta-P for rs22695779.5E-09), and FOXP3 (rs11798415, P5.8E-04, OR1.19). Association of GV with CTLA4 (rs12992492, P5.9E-05, OR1.20; meta-P for rs2317751.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions

    A computational framework for complex disease stratification from multiple large-scale datasets.

    Get PDF
    BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine

    Co-expression of two chicken genes for purine biosynthesis from a bidirectional promoter

    No full text
    GPAT and AIRC encode the enzymes that catalyze steps 1 and 6 plus 7, respectively, in the de novo purine biosynthesis. The avian genes were cloned and characterized and it was established that they are closely linked and transcribed divergently. The promoter, embedded in a CpG island, directs co-expression of GPAT and AIRC from distinct transcription start sites 229 bp apart. This is the first example of genes coding for structurally unrelated enzymes of the same pathway being arranged in this manner. This arrangement has the potential to provide for regulated co-expression comparable to that in a prokaryotic operon. In order to identify important cis-elements in the intergenic region, the promoter was scanned by deletion mutagenesis and a bireporter vector was used to assay transcriptional activity in both directions in transient transfection assays. The results show that the intergenic region is an integrated bidirectional promoter rather than a juxtaposition of two independent promoters. Removal of sequences containing the two Sp1 or CCAAT boxes on the AIRC side or the CCAAT box on the GPAT side reduced transcription significantly on both sides. Surprisingly, removal of \sim50 bases surrounding the AIRC transcription start site severely impaired transcriptional activity in both directions. Deletion of DNA sequences downstream of the AIRC transcriptional start site and around the GPAT transcriptional start site reduced activity in a side-specific manner. Gel retardation assays using HeLa nuclear extracts detected a specific complex formed on the presumed AIRC initiator element. Mobility shift competition assays limited the binding site to 41 bp around the AIRC transcription start and a 41 bp oligonucleotide with the same sequence retained specific binding. DNase I assays show that protein binding on this region induces a hypersensitive site on the coding strand, in front of the transcription start site, and methylation interference assays implicate nucleotides one turn of the helix downstream of the hypersensitive site in protein/DNA specific contacts. On the GPAT side, transfection data, gel retardation and DNase I footprint assays implicate an octamer-like motif in GPAT expression. The data suggest that the two genes share an integrated bidirectional promoter and that a novel Inr element plays a central role in coordinating expression of the divergently transcribed AIRC and GPAT genes
    corecore