186 research outputs found

    Avoiding observability singularities in output feedback bilinear systems

    Get PDF
    Control-affine output systems generically present observability singularities, i.e. inputs that make the system unobservable. This proves to be a difficulty in the context of output feedback stabilization, where this issue is usually discarded by uniform observability assumptions for state feedback stabilizable systems. Focusing on state feedback stabilizable bilinear control systems with linear output, we use a transversality approach to provide perturbations of the stabilizing state feedback law, in order to make our system observable in any time even in the presence of singular inputs

    Full discontinuous Galerkin formulation of shells in large deformations with parallel and fracture mechanics applications

    Full text link
    Fracture mechanical problems can be solved by coupling the finite elements with a cohesive approach. Unfortunately, the classical cohesive methods suffer from severe limitations. Indeed, on one hand, the intrinsic approach, which inserts the cohesive elements at the beginning, has to model the prefracture stage. This requires an initial slope in the traction separation law that should tend toward infinity to avoid lack of consistency leading to obvious numerical problems. On the other hand, the extrinsic cohesive method inserts the cohesive elements during the simulation when a fracture criterion is reached. This insertion requires topological mesh modifications and therefore a very complicated implementation, especially in a parallel code. To overcome these limitations, new methods were developed and in particular, an approach based on discontinuous Galerkin formulation (DG) has been pioneered by R. Radovitzky (Radovitzky cmame2011). The use of the DG principle allows to formulate the problem with discontinuous elements and the continuity between them is ensured weakly by terms integrated on the elements interface . These interface elements can be easily replaced by a cohesive element during the simulation. We have recently developed this approach for shells (Becker cmame2011) to obtain a full DG method. Moreover, a new cohesive law based on the reduced stresses of the thin bodies formulation is developed to propagate a fracture through the thickness. This cohesive model dissipates the right amount of energy during crack phenomena. These developments are implemented in parallel and validated by the study the blast of a notched cylinder, for which experimental and numerical (by XFEM method) data are reported in the literature by R. Larsson (Larsson ijnme2011). Finally, as thin structures are often made of ductile materials, which show large deformations before fracture, the formulation is extended to the non linear case with hyperelastic material law. This one can take into account the damage and a criterion based on the work of Huespe (Huespe plasticity2009) is developed to localize the damage leading to the apparition and propagation of cracks

    Dynamic Output Feedback Stabilization of Non-uniformly Observable Dissipative Systems

    Get PDF
    Output feedback stabilization of control systems is a crucial issue in engineering. Most of these systems are not uniformly observable, which proves to be a difficulty to move from state feedback stabilization to dynamic output feedback stabilization. In this paper, we present a methodology to overcome this challenge in the case of dissipative systems by requiring only target detectability. These systems appear in many physical systems and we provide various examples and applications of the result

    Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland

    Get PDF
    Erosion of biodiversity generated by anthropogenic activities has been studied for decades in many areas at species level, using taxa monitoring. In contrast, genetic erosion within species has rarely been tracked, and is often studied by inferring past population dynamics from contemporaneous estimators. An alternative to such inferences is the direct examination of past genes, by analysing museum collection specimens. While providing direct access to genetic variation over time, historical DNA is usually not optimally preserved, and it is necessary to apply genotyping methods based on hybridization-capture to unravel past genetic variation. In this study, we apply such a method (i.e., HyRAD), to large time series of two butterfly species in Finland, and present a new bioinformatic pipeline, namely PopHyRAD, that standardizes and optimizes the analysis of HyRAD data at the within-species level. In the localities for which the data retrieved have sufficient power to accurately examine genetic dynamics through time, we show that genetic erosion has increased across the last 100 years, as revealed by signatures of allele extinctions and heterozygosity decreases, despite local variations. In one of the two butterflies (Erebia embla), isolation by distance also increased through time, revealing the effect of greater habitat fragmentation over time.Peer reviewe

    Lithium Niobate Optical Waveguides and Microwaveguides

    Get PDF
    Lithium niobate has attracted much attention since the 1970s due to its capacity to modify the light by means of an electric control. In this chapter, we review the evolution of electro-optical (EO) lithium niobate waveguides throughout the years, from Ti-indiffused waveguides to photonic crystals. The race toward ever smaller EO components with ever-lower optical losses and power consumption has stimulated numerous studies, the challenge consisting of strongly confining the light while preserving low losses. We show how waveguides have evolved toward ridges or thin film-based microguides to increase the EO efficiency and reduce the driving voltage. In particular, a focus is made on an easy-to-implement technique using a circular precision saw to produce thin ridge waveguides or suspended membranes with low losses

    Helically chiral NHC‐gold(I) complexes: synthesis, chiroptical properties and electronic features of the [5]helicene‐imidazolylidene ligand

    Get PDF
    The golden twist: Monodentate [5]helicene-imidazolylidene gold(I) complexes were prepared in good yields and structurally characterized. Benefiting from the presence of the configurationally stable [5]helicenic unit, they exhibit appealing chiroptical features, such as strong circular dichroism, moderate circularly polarized phosphorescence and dual emission with phosphorescence lifetimes up to the millisecond range

    LiNbO3 ridge waveguides realized by precision dicing on silicon for high efficiency second harmonic generation

    Full text link
    Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only use of a precision dicing machine without need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. Influence of geometrical non uniformities of waveguides due to fabrication process is asserted. Components characteristics are studied notably their robustness and tunability versus temperature.Comment: 10 pages, 10 figure

    Modulation of chiroptical and photophysical properties in helicenic rhenium(I) systems: the use of an N‐(aza[6]helicenyl)‐NHC ligand

    Get PDF
    The photophysical and chiroptical properties of a novel, chiral helicene-NHC−Re(I) complex bearing an N-(aza[6]helicenyl)-benzimidazolylidene ligand are described, showing its ability to emit yellow circularly polarized luminescence. A comparative analysis of this new system with other helicene-Re(I) complexes reported to date illustrates the impact of structural modifications on the emissive and absorptive properties
    corecore