61 research outputs found

    The Informational Approach to Global Optimization in presence of very noisy evaluation results. Application to the optimization of renewable energy integration strategies

    Full text link
    We consider the problem of global optimization of a function f from very noisy evaluations. We adopt a Bayesian sequential approach: evaluation points are chosen so as to reduce the uncertainty about the position of the global optimum of f, as measured by the entropy of the corresponding random variable (Informational Approach to Global Optimization, Villemonteix et al., 2009). When evaluations are very noisy, the error coming from the estimation of the entropy using conditional simulations becomes non negligible compared to its variations on the input domain. We propose a solution to this problem by choosing evaluation points as if several evaluations were going to be made at these points. The method is applied to the optimization of a strategy for the integration of renewable energies into an electrical distribution network

    Sources and sinks of methane in sea ice: Insights from stable isotopes

    Get PDF
    We report on methane (CH4) stable isotope (d13C and d2 H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice, partly explaining the large range of isotopic values observed (d13C between –68.5 and –48.5 ‰ and d2 H between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly high d13C values (between –46.9 and –13.0 ‰), whereas d2 H values (between –313 and –113 ‰) were in the range of those observed at Barrow.These are the first measurements of CH4 isotopic composition in Antarctic sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface, contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an inert barrier passively accumulating CH4 at the ocean-atmosphere boundary

    Contribution du Stockage à la Gestion Avancée des Systèmes Électriques : approches Organisationnelles et Technico-économiques dans les Réseaux de Distribution

    No full text
    Innovative solutions must be developed to make future power systems able to overcome a growing number of challenges. In particular, energy storage is thought to be the missing link that will help enable the massive integration of renewable sources in distribution grids. The present research work aims to investigate this new technical option, which has reached maturity and is currently attracting increasing attention. In the first part of the dissertation, general methods to assess the potential and opportunities of distributed energy storage are presented. A framework for characterizing storage technologies is defined and its use highlights interesting performances but high costs. That is why the benefits of such devices for power systems are crucial to their development. The study of this point is carried out in two phases: their applications for various stakeholders of liberalized power systems are first classified and precisely defined; the aggregation of some of these services to increase the profitability of energy storage is then contemplated using a new method. This approach leads to the identification of high-value configurations that deserve further exploration. To this end, a scalable, flexible model of distributed energy storage systems is proposed in the second part of the dissertation. Its implementation in a dynamic simulation software allows the study of advanced storage service packs in power systems. The possibilities offered by these tools are illustrated and experimentally validated on a case study: the provision of a fast frequency control reserve by distributed storage to reduce the use of automatic load-shedding in isolated power systems is analyzedDes solutions innovantes doivent être développées pour envisager l’avenir des systèmes électriques face à un nombre grandissant de contraintes. En particulier, le stockage d’énergie est pressenti comme un soutien indispensable à l’essor massif dans les réseaux de distribution de sources de production exploitant les énergies renouvelables. Les présents travaux visent à apporter des éléments de réflexion sur cette option technique qui arrive à maturité et suscite l’intérêt. Dans un premier temps, des méthodes d’étude sont proposées pour cerner le potentiel et les opportunités du stockage distribué. Une grille de caractérisation des technologies est introduite et sa mise en œuvre souligne des performances intéressantes à des coûts qui, cependant, demeurent élevés. Pour rendre leur utilisation réaliste, la valeur de ces dispositifs pour les systèmes électriques est donc critique. Nous l’analysons en deux étapes : une classification de leurs services pour les différents acteurs en présence est définie avant d’aborder la mutualisation de fonctions, requise pour favoriser l’atteinte d’une rentabilité, via une approche originale. Cette démarche aboutit à l’identification de configurations porteuses qui méritent des études plus poussées. Pour ce faire, un modèle général de comportement des unités de stockage est développé dans un second temps. Interfacé à un logiciel de simulation dynamique des réseaux, il permet d’évaluer l’utilisation de telles installations pour diverses offres de services. Ces outils sont appliqués et validés expérimentalement sur la caractérisation d’une réserve impulsionnelle fournie par le stockage pour réduire les délestages dans les systèmes insulaire

    Participation of Energy Storage in the Advanced Management of Power Systems : organizational, Technical and Economic Approaches in Distribution Grids

    No full text
    Des solutions innovantes doivent être développées pour envisager l’avenir des systèmes électriques face à un nombre grandissant de contraintes. En particulier, le stockage d’énergie est pressenti comme un soutien indispensable à l’essor massif dans les réseaux de distribution de sources de production exploitant les énergies renouvelables. Les présents travaux visent à apporter des éléments de réflexion sur cette option technique qui arrive à maturité et suscite l’intérêt. Dans un premier temps, des méthodes d’étude sont proposées pour cerner le potentiel et les opportunités du stockage distribué. Une grille de caractérisation des technologies est introduite et sa mise en œuvre souligne des performances intéressantes à des coûts qui, cependant, demeurent élevés. Pour rendre leur utilisation réaliste, la valeur de ces dispositifs pour les systèmes électriques est donc critique. Nous l’analysons en deux étapes : une classification de leurs services pour les différents acteurs en présence est définie avant d’aborder la mutualisation de fonctions, requise pour favoriser l’atteinte d’une rentabilité, via une approche originale. Cette démarche aboutit à l’identification de configurations porteuses qui méritent des études plus poussées. Pour ce faire, un modèle général de comportement des unités de stockage est développé dans un second temps. Interfacé à un logiciel de simulation dynamique des réseaux, il permet d’évaluer l’utilisation de telles installations pour diverses offres de services. Ces outils sont appliqués et validés expérimentalement sur la caractérisation d’une réserve impulsionnelle fournie par le stockage pour réduire les délestages dans les systèmes insulairesInnovative solutions must be developed to make future power systems able to overcome a growing number of challenges. In particular, energy storage is thought to be the missing link that will help enable the massive integration of renewable sources in distribution grids. The present research work aims to investigate this new technical option, which has reached maturity and is currently attracting increasing attention. In the first part of the dissertation, general methods to assess the potential and opportunities of distributed energy storage are presented. A framework for characterizing storage technologies is defined and its use highlights interesting performances but high costs. That is why the benefits of such devices for power systems are crucial to their development. The study of this point is carried out in two phases: their applications for various stakeholders of liberalized power systems are first classified and precisely defined; the aggregation of some of these services to increase the profitability of energy storage is then contemplated using a new method. This approach leads to the identification of high-value configurations that deserve further exploration. To this end, a scalable, flexible model of distributed energy storage systems is proposed in the second part of the dissertation. Its implementation in a dynamic simulation software allows the study of advanced storage service packs in power systems. The possibilities offered by these tools are illustrated and experimentally validated on a case study: the provision of a fast frequency control reserve by distributed storage to reduce the use of automatic load-shedding in isolated power systems is analyze

    First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    Get PDF
    [1] We report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg−1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg−1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg−1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg−1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m−2 d−1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor

    A novel non-intrusive method using design of experiments and smooth approximation to speed up multi-period load-flows in distribution network planning

    No full text
    International audienceAlternative solutions to network reinforcement are now being investigated in distribution network planning studies to reduce the costs and periods for integrating renewable energy sources. However, a thorough techno-economic analysis of these solutions requires a large number of multi-period load-flow calculations, which makes it hard to implement in planning tools. A non-intrusive approximation method is therefore proposed to obtain fast and accurate multi-period load-flows. This method builds a surrogate model of the load-flow solver using polynomial regression and kriging, combined with Latin hypercube sampling. Case studies based on real distribution networks show that the proposed method is more efficient for distribution network planning in presence of renewable energy sources than time subsampling and, in some cases, voltage linearization. In particular, accurate 10-minute profiles of voltages, currents, and network power losses are obtained in a satisfactory computation time

    Dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas variations arising from sea ice shifts of salinity and temperature in the Prymnesiophyceae Phaeocystis antarctica

    No full text
    The Southern Ocean, which includes the seasonal ice zone (SIZ), is a source of large sea-air fluxes of dimethylsulfide (DMS), a climate active gas involved in Earth cooling processes. In this area, the prymnesiophyte Phaeocystis antarctica (P. antarctica) is one of the main producers of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO), two metabolites that are precursors of DMS. These algae are also present in sea ice and contribute substantially to the high DMSP and DMSO concentrations observed in this habitat. DMSP and DMSO production in sea ice by P. antarctica is proposed to be promoted by its ability to live in extreme environmental conditions. We designed cell culture experiments to test that hypothesis, focusing on the impact of shifts of temperature and salinity on the DMSP and DMSO cell quotas. Our experiments show an increase in DMSP and DMSO cell quotas following shifts in salinity (34 to 75, at 4 °C), which suggests a potential osmoregulator function for both DMSP and DMSO. Stronger salinity shifts (up to 100) directly impact cell growth and induce a crash of the cultures. Combining the salinity (34 to 75) and temperature (4 °C to –2.3 °C) shifts induces higher increases of DMSP and DMSO cell quotas that also suggests an implication of both metabolites in a cryoprotectant system. Experimental cell quotas (including diatom Fragilariopsis cylindrus quotas from a previous study) are then used to reconstruct DMSP and DMSO profiles in sea ice based on the biomass and taxonomy. Finally, the complexity of the transposition of rates obtained in the experimental domain to the real world is discussed.info:eu-repo/semantics/publishe
    • …
    corecore