71 research outputs found
Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion
A thorough understanding of nanoparticle bio-distribution at the feto-maternal
interface will be a prerequisite for their diagnostic or therapeutic
application in women of childbearing age and for teratologic risk assessment.
Therefore, the tissue interaction of biocompatible dendritic polyglycerol
nanoparticles (dPG-NPs) with first- trimester human placental explants were
analyzed and compared to less sophisticated trophoblast-cell based models.
First-trimester human placental explants, BeWo cells and primary trophoblast
cells from human term placenta were exposed to fluorescence labeled, ∼5 nm
dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10
nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence
microscopy. To assess the impact of dPG-NP on trophoblast integrity and
endocrine function, LDH, and hCG releases were measured. A dose- and charge-
dependent accumulation of dPG-NPs was observed at the early placental barrier
and in cell lines, with positive dPG-NP-surface causing deposits even in the
mesenchymal core of the placental villi. No signs of plasma membrane damage
could be detected. After 24 h we observed a significant reduction of hCG
secretion in placental explants, without significant changes in trophoblast
apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP’s
surface charge substantially influences their bio-distribution at the feto-
maternal interface, with positive charge facilitating trans-trophoblast
passage, and in contrast to more artificial models, the first-trimester
placental explant culture model reveals potentially hazardous influences of
charged dPG-NPs on early placental physiology
The first trimester human trophoblast cell line ACH-3P: A novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations – TNF-α stimulates MMP15 expression
<p>Abstract</p> <p>Background</p> <p>The trophoblast compartment of the placenta comprises various subpopulations with distinct functions. They interact among each other by secreted signals thus forming autocrine or paracrine regulatory loops. We established a first trimester trophoblast cell line (ACH-3P) by fusion of primary human first trimester trophoblasts (week 12 of gestation) with a human choriocarcinoma cell line (AC1-1).</p> <p>Results</p> <p>Expression of trophoblast markers (cytokeratin-7, integrins, matrix metalloproteinases), invasion abilities and transcriptome of ACH-3P closely resembled primary trophoblasts. Morphology, cytogenetics and doubling time was similar to the parental AC1-1 cells. The different subpopulations of trophoblasts e.g., villous and extravillous trophoblasts also exist in ACH-3P cells and can be immuno-separated by HLA-G surface expression. HLA-G positive ACH-3P display pseudopodia and a stronger expression of extravillous trophoblast markers. Higher expression of insulin-like growth factor II receptor and human chorionic gonadotropin represents the basis for the known autocrine stimulation of extravillous trophoblasts.</p> <p>Conclusion</p> <p>We conclude that ACH-3P represent a tool to investigate interaction of syngeneic trophoblast subpopulations. These cells are particularly suited for studies into autocrine and paracrine regulation of various aspects of trophoblast function. As an example a novel effect of TNF-α on matrix metalloproteinase 15 in HLA-G positive ACH-3P and explants was found.</p
Increased expression of endothelial lipase in symptomatic and unstable carotid plaques
The aim of this study was to evaluate endothelial lipase (EL) protein expression in advanced human carotid artery plaques (HCAP) with regard to plaque (in)stability and the incidence of symptoms. HCAP were collected from 66 patients undergoing carotid endarterectomy (CEA). The degree of plaque (in)stability was estimated by ultrasound and histology. In HCAP sections, EL expression was determined by immunostaining and the intensity was assessed on a semi-quantitative scale (low: <25%, high: >25% positive cells). Monocytes and macrophages in adjacent HCAP sections were stained with a CD163 specific antibody. High EL staining was more prevalent in histologically unstable plaques (in 33.3% of fibrous plaques, 50% of ulcerated non-complicated plaques and 79.2% of ulcerated complicated plaques; χ2 test, p = 0.004) and in the symptomatic group (70.8 vs. 42.9% in the asymptomatic group; χ2 test, p = 0.028). The majority of EL immunostaining was found in those HCAP regions exhibiting a strong CD163 immunostaining. EL in HCAP might be a marker and/or promoter of plaque instability and HCAP-related symptomatology
Hydrology needed to manage droughts: the 2015 European case
Hydrology needed to manage droughts: the 2015 European cas
IGF2 stimulates fetal growth in a sex- and organ-dependent manner
BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mazzucco, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Gauster, Martin. Medizinische Universität Graz; AustriaFil: Desoye, Gernot. Medizinische Universität Graz; AustriaFil: Hiden, Ursula. Medizinische Universität Graz; Austri
Spectrin-based skeleton as an actor in cell signaling
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types
Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts
Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development
The role of CX3CL1 in fetal-maternal interaction during human gestation
Embryo implantation and subsequent placentation require a fine balanced fetal-maternal cross-talk of hormones, cytokines and chemokines. Amongst the group of chemokines, CX3CL1 (also known as fractalkine) has recently attracted attention in the field of reproductive research. It exists both as membrane-bound and soluble isoforms. On the basis of current experimental evidence, fractalkine is suggested to regulate adhesion and migration processes in fetal-maternal interaction at different stages of human pregnancy. Expressed by uterine glandular epithelial cells, predominantly during the mid-secretory phase of the menstrual cycle, fractalkine appears to prime the blastocyst for forthcoming implantation. After implantation, fractalkine is suggested to regulate invasion of extravillous trophoblasts by altering their expression profile of adhesion molecules. With onset of perfusion of the intervillous space at the end of first trimester, fractalkine present at the apical microvillous plasma membrane of the syncytiotrophoblast may mediate close interaction of placental villi with circulating maternal blood cells
Maternal Platelets—Friend or Foe of the Human Placenta?
Human pregnancy relies on hemochorial placentation, including implantation of the blastocyst and deep invasion of fetal trophoblast cells into maternal uterine blood vessels, enabling direct contact of maternal blood with placental villi. Hemochorial placentation requires fast and reliable hemostasis to guarantee survival of the mother, but also for the neonates. During human pregnancy, maternal platelet count decreases gradually from first, to second, and third trimester. In addition to hemodilution, accelerated platelet sequestration and consumption in the placental circulation may contribute to a decline of platelet count throughout gestation. Local stasis, turbulences, or damage of the syncytiotrophoblast layer can activate maternal platelets within the placental intervillous space and result in formation of fibrin-type fibrinoid. Perivillous fibrinoid is a regular constituent of the normal placenta which is considered to be an important regulator of intervillous hemodynamics, as well as having a role in shaping the developing villous trees. However, exaggerated activation of platelets at the maternal-fetal interface can provoke inflammasome activation in the placental trophoblast, and enhance formation of circulating platelet-monocyte aggregates, resulting in sterile inflammation of the placenta and a systemic inflammatory response in the mother. Hence, the degree of activation determines whether maternal platelets are a friend or foe of the human placenta. Exaggerated activation of maternal platelets can either directly cause or propagate the disease process in placenta-associated pregnancy pathologies, such as preeclampsia
- …