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Abstract 

Background: IGF2 is a key determinant of fetal growth, and altered expression of IGF2 is 

implicated in fetal growth disorders and maternal metabolic derangements including 

gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect 

fetal growth. 

Methods: We employed a rat model of repeated intra-fetal IGF2 administration in late 

pregnancy, i.e. during GD19-GD21, and measured the consequences on fetal organ weight 

and expression of insulin/IGF-axis components. 

Results: IGF2 treatment tended to increase fetal weight, but only weight increase of fetal 

stomach reached significance (+33±9%; p<0.01). Sex dependent data analysis revealed a 

sexual dimorphism of IGF2 action: In male fetuses, IGF2 administration significantly 

increased fetal weight (+13±3%; p<0.05) and weight of fetal stomach (+42±10%; p<0.01), 

intestine (+26±5%; p<0.05), liver (+13±4%; p<0.05) and pancreas (+25±8%; p<0.05). 

Weights of heart, lungs and kidneys were unchanged. In female fetuses, IGF2 increased only 

stomach weight (+26±9%; p<0.05). Furthermore, gene expression of insulin/IGF-axis in 

heart, lungs, liver and stomach was more sensitive towards IGF2 treatment in male than in 

female fetuses.  

Conclusion: Data suggest that elevated circulating IGF2 in late pregnancy predominantly 

stimulates organ growth of the digestive system, and male fetuses are more susceptible 

towards the IGF2 effects than female fetuses.  
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Introduction 

Fetal growth is crucially determined by a group of peptides/proteins of the insulin/insulin like 

growth factors (IGF)-axis comprising the insulin-like growth factors 1 (IGF1) and 2 (IGF2), 

insulin, their receptors and their binding proteins, which bind IGF1 and 2 and modulate their 

action. The central role of IGFs and insulin in fetal growth was shown by a multitude of 

studies in human and animals (1). IGF1 regulates size prenatally, reflected by the correlation 

of cord blood IGF1 with fetal size, and determines postnatal growth until adolescence (2). In 

contrast to this, IGF2 is a growth factor particularly important for fetal growth (3) and does 

not regulate body length later on. IGF2 is synthesized by various fetal tissues and organs, in 

particular by the fetal pancreas (4) and liver (5). The growth promoting action of IGF2 is 

mediated by IGF1-receptor (IGF1R) and the insulin receptor (INSR) (6,7). The role of the 

IGF2-receptor (IGF2R) in growth promoting effects of IGF2 is controversial since it was 

shown to function as both, a signalling and a clearance receptor for IGF2 (8). Thus, potential 

receptors for IGF2 are present on virtually all fetal organs, but at different levels. 

Bioavailability of IGF2 is further modified by circulating as well as locally acting IGF-

binding proteins (IGFBPs) (9).  

IGF2 is transcriptionally regulated by the non-coding RNA H19 and both are 

imprinted in human and rodents, indicating the key role of IGF2 in fetal development. Thus, 

the levels of IGF2 as well as of H19 are modulated by DNA methylation. While IGF2 is 

maternally imprinted and paternally expressed, H19 is expressed only from the maternal allele 

(10). Disruption of genomic imprinting of H19/IGF2 genes results in two clinical syndromes 

with opposite growth phenotypes: Loss of maternal imprinting of IGF2 underlies the 

Beckwith-Wiedemann syndrome (BWS) and is characterized by fetal overgrowth (11). Loss 

of paternal imprinting of H19 is common to Silver-Russell syndrome characterized by fetal 

growth retardation (11).  
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Changes in IGF2 levels are associated with extremes of fetal weight, such as fetal 

growth restriction (12,13). DNA methylation at the IGF2/H19 locus is a key determinant of 

the newborn’s weight variance within normal range (14). Moreover, fetal IGF2 levels may be 

modulated by environmental insults, including nutrition (15) and maternal metabolism: 

Maternal gestational diabetes (GDM) is a glucose intolerance that clinically manifests mainly 

in the second half of pregnancy. It is associated with elevated fetal cord blood IGF2 levels 

(16) which correlate with altered methylation of the IGF2/H19 locus (16). In fact, GDM 

fetuses are heavier than fetuses from uncomplicated pregnancies (17).  

Here we aimed to investigate the effect of elevated fetal IGF2 in late pregnancy and 

which particular fetal organs are target of IGF2 growth promoting effects. To this end, we 

used a rat model of intra-fetal administration and investigated the effect of increased IGF2 

levels on fetal organ weight and gene expression of insulin/IGF-axis components in late 

pregnancy.  
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Materials and Methods 

Animals 

Albino Wistar rats were bred with free access to commercial rat chow (Asociación 

Cooperativa Argentina, Buenos Aires, Argentina) and tap water. The animals were kept at a 

controlled temperature of 20°C, with 14 h light and 10 h dark lighting cycles. The guidelines 

for the care and use of animals approved by the local institution were followed, according to 

the Principles of Laboratory Animal Care (NIH publication number 85-23, revised 1985, 

http://grants1.nih.gov/grants/olaw/references/phspol.htm).  

 

Experimental design 

Female Albino Wistar rats at 12 weeks of age were mated with males. The presence of sperm 

cells in vaginal smears confirmed the pregnant state (day 1 of pregnancy).  

IGF2 administration to fetuses and sample collection 

On day 19 of gestation, mothers were shortly anesthesized in a CO2 chamber, followed by 

slight vapors of ether. An abdominal incision was performed and the left horn of the uterus 

was exposed. Rats with 5-7 fetuses in each uterine horn were used. The fetuses were 

numbered from the ovary and alternatively injected subcutaneously on their backs through the 

uterine wall with 50 µl of either saline or human recombinant IGF2 20 nmol / fetus (Gentaur, 

Germany). Human IGF2 was chosen, since it is highly homologous to rat IGF2 and induces 

growth promoting effects in rats (18). After administration, the left uterine horn was carefully 

introduced in the abdominal cavity and the abdominal muscle layer and the skin layer were 

independently sewn. The entire surgery lasted less than 10 mins. The animals were 

completely recovered after 15 min. The procedure was repeated on day 20 and 21 of 

gestation. After 3 h of the injection on the last day, mothers were slightly anesthesized in a 

CO2 chamber and the animals euthanized by cervical dislocation. The fetuses from the left 

horn were immediately removed and euthanized by decapitation and fetal blood was collected 

©    2017 Macmillan Publishers Limited. All rights reserved.
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in heparinized tubes. Fetal plasma was obtained by blood centrifugation, and conserved at -

80°C for further determinations. The sex of the fetuses was recorded and their organs 

carefully removed under a stereomicroscope using microsurgical dissecting. Fetuses and fetal 

organs were weighed, stored in RNAlater® and kept at -20°C for future analysis. Weight of 

the non-injected fetuses from the right uterine horn was also recorded (3.10 ± 0.08 g) and was 

similar to that of the saline injected fetuses form the left horn.  

Overall, a total of 13 dams were subjected to the procedure. Only litters containing at least 

one male and one female saline treated fetus, and one male and one female IGF2 treated fetus 

were used (n=10). One fetus of each group was selected for further analysis, yielding a total 

of 40 fetuses. Of these fetuses, fetal weight and organ weight was recorded, and plasma was 

preserved for ELISA. Moreover, of each of these four groups, 5-8 organ samples were 

randomly chosen for mRNA analysis.  

Validation of the method:  

Previously, we have already successfully used the method of intra-fetal administration of 

substances at term of gestation (19,20). In order to ascertain complete distribution of the IGF2 

over all fetal organs, we performed the same procedure with a blue dye (Evans Blue, 5% in 

PBS) instead of IGF2. Similar to the IGF2 administration, mothers were euthanized 3 h after 

injection on day 21, and fetuses were collected. The dye was homogeneously distributed over 

all fetal organs (Supplemental Figure S1). We also assessed 5 different IGF2 concentrations 

(2000, 200, 20, 2 and 0.2 nmol /fetus /day) and choose the minimal concentration that induced 

an increase in IGF2 plasma concentrations with least lethality. The highest concentration 

induced an increase (30%) in fetal lethality. The survival of the fetuses injected with the 

concentration chosen (20 nmol / fetus / day) showed no change in survival compared to the 

saline injected ones (saline: 93%, IGF2: 94%). Measurement of human in fetal plasma 

depicted no signal for saline treated-fetuses and 11.2±1.0 ng/ml in the IGF2 administered 

ones.  
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IGF2 measurement in fetal plasma 

Human IGF2 was measured in fetal plasma by a commercial EIA kit (Diagnosmed, Buenos 

Aires, Argentina). Sample free IGF2 concentration was obtained from the calibrator curve. 

Intra- and interassay coefficients of variation were 6.4% and 10.5 %, respectively.  

For the measurement of endogenous free circulating Igf2 levels in fetal plasma, we 

developed an ELISA (Duoset Mouse IGF 2 ELISA Development) which was as equally 

sensitive for mouse and rat Igf2 according to manufacturer’s instructions (R&D Systems, 

Abingdon, UK) as described previously (21).  

 

Real time quantitative PCR  

cDNA was synthesized incubating 1 μg of extracted total RNA in a first-strand buffer 

containing 200 U of MMLV enzyme (Promega, Sunnyvale, CA), 7.5 mM of random primers 

hexamers (Promega) and 0.5 mM of each dNTP (Invitrogen, Carlsbad CA). The reaction mix 

was incubated at 37°C for 45 min, followed by 15 min at 45°C and 20 min at 70°C.  

Gene expression assays for Rpl30 (Rn00321148_g1), Igf1 (Rn99999087_m1), Igf2 

(Rn01454518_m1), Igf1r (Rn01477918_m1), Igf2r (Rn01636937_m1), Insr 

(Rn01637243_m1), Igfbp1 (Rn01452798_m1), Igfbp2 (Rn00565473_m1) and Igfbp3 

(Rn01401281_m1) and the TaqMan® Universal Master mix II were purchased from Applied 

Biosystems (Carlsbad CA) and the methodology followed according to the manufacturer’s 

instructions. The ABI Prism 7900 sequence detection system (Applied Biosystems) PCR 

cycling conditions were as follows: initial denaturation at 95°C for 10 min, followed by 40 

cycles at 94°C for 30 sec, 60°C for 15 sec and 72°C for 30 sec, and a 10 min terminal 

incubation at 72°C. Sequence Detector Software (SDS version 1.6.3; Applied Biosystems) 

was used to extract the PCR data and threshold lines were chosen automatically. Rpl30 
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expression was used as an internal expression control, because it did not vary between groups. 

Data were analyzed using the 2
-ΔΔCt

 method.  

 

Heat map 

Expression data from real time quantitative PCR were used to generate a heat map. To this 

end, ΔΔCt values for each gene in each organ were calculated using the mean of the ΔCt 

values of male and female control fetuses. The mean values for male and female fetuses were 

used to construct the heat map in MS Excel. Low ΔΔCt values indicating high mRNA 

expression were illustrated in black, high ΔΔCt values indicating low mRNA expression were 

illustrated in white.  

 

Statistical analysis 

Relative differences between samples were analyzed by Student's t-test or by ANOVA with 

Bonferroni's post-hoc test. Differences were considered statistically significant with a P-value 

of <0.05. Male and female fetuses administered with saline or IGF2 from a total of 10 rats 

were included in the statistical analysis. Rats with 5 to 7 fetuses in each horn were included, 

rats with fetal lethality were excluded. .  
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Results 

In order to analyse the effect of IGF2 on fetal organs in late pregnancy, we administered 

human recombinant IGF2 to rat fetuses during the last 3 days of gestation. As a control that 

substances administered in such way in fact reach the fetal organs, we monitored the transport 

of Evans Blue, a blue dye that was injected following the same protocol. After the last 

administration of Evans Blue at GD21, we observed blue staining in all organs investigated, 

confirming the distribution of the dye into the organs after the procedure (Supplemental 

Figure S1). Furthermore, we measured circulating IGF2 levels in fetal plasma after the last 

administration of IGF2. The EIA is specific for human, but not rat IGF2. Only in the plasma 

of IGF2 administered fetuses we measured IGF2 levels (11.2±1.0 ng/ml) whereas no IGF2 

was detected in the saline-administered fetuses, confirming that the injected IGF2 reached the 

fetal circulation. As a response to exogenous IGF2 injection, endogenous circulating rat Igf2 

decreased in the injected group from 303±26 to 82±22 pg/ml.  

Effect of IGF2 on fetal organ weight  

The weight of IGF2 treated fetuses tended to be higher than the controls (p=0.09). Also, 

intestines from IGF2-administered fetuses presented a tendency to be heavier than the 

intestines from the saline-injected fetuses (p=0.05). Furthermore, intra-fetal administration of 

IGF2 induced a clear increase in fetal stomach weight (p<0.01). However, fetal hearts, lungs, 

kidneys and pancreas displayed no changes in weight compared to the organs from saline-

injected fetuses (Table 1). 

Effect of IGF2 on expression of fetal insulin/IGF-axis genes 

Gene expression of IGF-axis components, i.e. Igf1, Igf2, Igf1r, Igf2r, Insr, Igfbp1, 

Igfbp2 and Igfbp3 was measured in four fetal organs: heart, lungs, liver and stomach. These 

organs were chosen as particularly sensitive towards IGF2 treatment, since liver is a key 

organ for IGF2 production, fetal lung development is regulated by IGF2 (22), and heart 

development is sensitive towards loss of IGF2 imprinting in Beckwith-Wiedemann syndrome 
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(23). Since stomach weight revealed the strongest change in IGF2-injected fetuses, stomach 

was also included. Whilst the expression of insulin/IGF-axis genes was unchanged in fetal 

hearts, IGF2 treatment induced changes in lungs, liver and stomach (Table 2).  

 

Sex dependent changes in the effect of fetal administration of IGF2  

The IGF system is sexually dimorphic in rats and human (24,25). Therefore, we furthermore 

stratified the analyses for fetal sex.  

Sex-dependent effects of IGF2 on fetal and fetal organ weight 

Within the saline treated fetuses we observed no sex dependent differences in weight 

of fetuses and fetal organs. Surprisingly, administration of IGF2 increased fetal weight only in 

male fetuses (p<0.05), while weight of female fetuses was unchanged by IGF2 treatment. 

Furthermore, in female fetuses, weights of heart, lungs and kidneys were unaltered by IGF2, 

and only stomach weight was increased (p<0.05). By contrast, male fetuses evinced a general 

response in organ weight due to the IGF2 administration: Weights of male fetal liver, 

intestine, stomach and pancreas were increased (p<0.05) (Figure 1).  

Circulating levels of IGF2  

In order to ensure that IGF2 levels were similar in male and female fetuses, we 

quantified circulating IGF2 dependent on fetal sex. Its levels were similar in male (11.3±1.3 

ng/ml) and female (11.0±1.6 ng/ml) fetuses.  

Sex dependent IGF2 effects on the fetal insulin/IGF-axis  

A heat map was generated to illustrate changes in gene expression between male and 

female control and IGF2 administered fetuses. Basal gene expression levels of the 

insulin/IGF-axis components in heart, lungs, liver and stomach were higher in female than 

male fetuses, but IGF2 administration resulted in more profound changes in male than in 

female fetuses (Figure 2). 
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Fetal liver responds in a sex-dependent manner to IGF2 administration 

The liver is a central organ for IGF production and liver was also among the organs, in which 

IGF2-dependent weight gain differed between male vs female fetuses. Therefore, we assessed 

the expression of the insulin/IGF-axis components in liver in a sex dependent manner. Sex-

independent analysis showed that gene expression of Igf1, Igf1r and Insr was upregulated in 

livers from both male and female IGF2 administered fetuses (Table 2). However, when 

analysed separately for both sexes, only livers from male fetuses responded to IGF2 injection 

with increased expression of Igf1, Igf1r and Insr, while in livers of female fetuses the IGF2 

effect was not significant (Figure 3).  
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Discussion 

We investigated organ specific endocrine effects of IGF2 in late pregnancy on fetal weight, 

fetal organ growth and gene expression of the insulin/IGF-axis. Our main finding was that 

male fetuses were more susceptible towards IGF2 effects than female fetuses. For instance, 

growth was stimulated predominantly in male fetuses, and also the expression of insulin/IGF-

axis genes was particularly modulated in male organs. 

The effect of increased IGF2 levels in embryonic and fetal mammalian development 

was observed and investigated in two different situations: The loss of IGF2 imprinting in 

BWS in humans as well as the overexpression of Igf2 in rodents. Both cause elevated IGF2 

expression throughout the entire period of intrauterine development. BWS as well as Igf2 

overexpression result in fetal overgrowth (26,27). Igf2 overexpression in rodents stimulates 

embryonic and fetal growth (27-29) with the growth promoting effect of IGF2 being more 

evident at term gestation (28).  

In contrast to this, we investigated the growth promoting effect of IGF2 levels that 

were elevated only during late pregnancy. Similar to situations of increased IGF2 during the 

entire period of fetal development, we also observed a trend to increased fetal weight. 

Surprisingly, the growth promoting effect was dependent on fetal sex. When male and female 

fetuses were analysed separately, the IGF2 induced fetal weight gain was observed 

predominantly in the males.  

Such a sex dependent effect of IGF2 on fetal growth was not reported previously. 

However, a sexual dimorphism exists in the IGF system in human and rodents with higher 

levels of IGF1 and IGFBP3 in female cord blood (24), and in females postnatally (25). This 

sexual dimorphism in IGF system may contribute to the observation that growth of male 

fetuses seems more susceptible towards environmental influences, such as nutrient supply and 

metabolic and hormonal derangements: Male fetuses are more likely to be macrosomic in 

normal pregnancy (30) and in pregnancies complicated by maternal GDM (31), where the risk 
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for macrosomia becomes even higher (32). At the other extreme of metabolic and nutritional 

derangements, also maternal undernutrition was shown to affect male fetuses more than 

female fetuses: In mice, maternal low protein diet during the preimplantation period reduces 

fetal liver expression of Igf2 only in male fetuses (33).  

Analysis of the effect of elevated IGF2 in late pregnancy on fetal organ weight 

revealed that not all organs responded to the growth promoting effect of IGF2. Most 

susceptible towards the IGF2 treatment were organs of the digestive system, i.e. stomach and, 

by trend, intestine. When organ weight was analysed depending on fetal sex, this observation 

became even more obvious for the male fetuses with stomach, intestine, liver and pancreas 

being heavier in the IGF2 treated group. A role of IGF2 in the growth of digestive organs may 

indicate that IGF2 predisposes the fetus for a nutrient rich environment. Overgrowth of 

digestive system in a situation of excess nutrient supply may seem counterintuitive since it 

ultimately, may promote overgrowth and adiposity. However, such effects resemble other, 

established mal-programming effects resulting from excess nutrient supply, such as an 

increased risk for obesity and diabetes of offspring of obese or diabetic mothers (34,35). Also 

BWS can be associated with organomegaly of several organs such as liver, kidneys, spleen, 

pancreas and heart (26). However, features of BWS are very variable. Besides, the phenotype 

of BWS is a product of disturbed genomic imprinting in the chromosomal region 11p15 and 

thus affects also other genes, such as the cell cycle regulator CDKN1C (cyclin dependent 

kinase inhibitor 1C) and the non-coding RNAs KCNQ1OT1 and H19 (11). Similar to BWS, 

different approaches to increase Igf2 action in rodents, either by overexpression, or reducing 

Igf2r levels, report hypertrophy the fetal heart, liver or kidneys (27,28,36). A study focussing 

particularly on the effect of Igf2 overexpression on fetal intestine reported increased crypt 

length in the small intestinal and the risk for intestinal adenomas (37). Moreover it has been 

observed that transgenic overexpression of Igf2 in mice induces pancreatic cell hyperplasia 

(38). Deletion of the H19 locus in mice and the consequent increase of Igf2 resulted in 
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placental overgrowth (39). Differences to our model with weight gain predominantly in the 

male fetuses and unaffected fetal hearts and kidneys may be related to the fact that we applied 

IGF2 only in late pregnancy, and that other studies did not determine organ growth in relation 

to fetal sex.  

GDM is a pregnancy pathology that manifests in the second half of gestation and is, 

amongst other metabolic derangements, associated with elevated fetal IGF2 levels. In fact, 

fetuses exposed to maternal GDM display an increase in liver length (40,41). Since GDM is 

not only associated with increased IGF2 but also with derangements of insulin and other 

hormones, cytokines and growth factors (42), the specific role of IGF2 is impossible to 

interpolate. Moreover, to the best of our knowledge, fetal organ development in response to 

maternal diabetes in human was not yet analysed dependent on fetal sex. 

For the analysis of insulin/IGF–axis gene expression we focussed on fetal heart, lungs, 

liver and stomach. Changes in gene expression did not always parallel changes in weight. 

Thus, fetal lungs did not respond to IGF2 treatment with weight increase, but with an increase 

in gene expression of Igf1r, Igfbp1, and a decrease of the Igf2r, of which the protein 

contributes to IGF2 clearance. Overall, data revealed that in control fetuses, insulin/IGF-axis 

genes were higher expressed in the female organs. However, after IGF2 administration, male 

fetuses responded with an increase in insulin/IGF-axis components that exceeded the basal 

expression levels in the organs of the female fetuses, which did not significantly respond to 

the IGF2 treatment.  

A limitation of the study is the use of recombinant human IGF2 for the treatment of rat 

fetuses. Since human IGF2 was shown previously to induce growth promoting effects in rats 

due to the homology between human and rat IGF2 (18) and recombinant rat Igf2 was not 

commercially available we decided on the use of human IGF2. Fetal circulating levels of 

human IGF2 indicated successful administration of IGF2 that reached fetal circulation. 

Resulting from the IGF2 administration, endogenous rat Igf2 decreased, but human IGF2 
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levels overwhelmed the normal, physiological Igf2 levels. Disruption of H19 imprinting of 

the maternal allele in mice results in an about 2 fold increase in Igf2 mRNA expression (29). 

Loss of Igf2r that, in normal conditions, mediates degradation of excess Igf2, results in an 2 to 

2.7 fold increase of fetal circulating igf2 (36). Disruption of H19 imprinting in combination 

with the disruption of the maternally expressed Igf2r increases fetal serum Igf2 levels up to 11 

fold (28). Direct effects of Igf2 overexpression in mouse chimeras made with transgenic 

embryonic stem cells increased Igf2 mRNA in fetal organs up to three fold (27). In our study, 

human IGF2 levels exceeded circulating endogenous Igf2 levels by more than 35 fold, 

however, one has to keep in mind that these levels are measured in the circulation and that 

human IGF2 levels in the organs may be lower.  

Another limitation is that maternal corticosterone levels were not measured. 

Corticosterone is a marker for stress and in mice, maternal corticosterone infusion at the 

beginning of pregnancy induces a reduction in placental igf2 mRNA levels together with an 

increase in placental weight, but not fetal weight on embryonic day 17.5 (43). However, we 

recorded weight and food consumption of the dams, which was not different from other time-

matched pregnant dams that were not subjected to the procedure.  

Besides the organs studied here, the effect of IGF2 on fetal adiposity would be an 

interesting aspect to study, since adipose tissue is responsive to IGF2 (44). However, rat 

fetuses are almost devoid of fat tissue of which accretion starts only after birth (45), and the 

study of IGF2 effects on offspring was not focus of this study. In fact, the role of IGF2 in late 

pregnancy on fat accretion and on post fetal growth in general would be certainly interesting 

for future studies.  

Our data demonstrate that an increase of IGF2 during late pregnancy stimulates fetal 

organ growth of the digestive system, particularly in the male fetuses. Moreover, data 

highlight that male and female fetal growth is regulated differently, and may support the 
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hypothesis that prenatal growth of male fetuses is more susceptible towards maternal 

nutritional insults than growth of female fetuses.  
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Figure Legends  

Figure 1: Fetal weight and weights of fetal organs from female and male fetuses injected with 

saline (open bars) or IGF2 (striped bars). a. Fetal weight. b. Fetal heart weight. c. Fetal lungs 

weight. d. Fetal kidneys weight. e. Fetal liver weight. f. Fetal stomach weight. g. Fetal 

intestine weight. h. Fetal pancreas weight. Each bar represents the mean ± SEM from 10 

fetuses from 10 different mothers. Statistical test: 2-way ANOVA, Post-test Bonferroni, * 

indicates p<0.05, ** indicates p<0.01.  

 

Figure 2: Heat map depicting the mean organ specific gene expression of each component of 

the insulin/IGF-axis in male and female fetuses administered with saline and in male and 

female fetuses injected with IGF2. Black indicates high gene expression and white indicates 

low gene expression. c: saline treated control fetuses; IGF2: IGF2 treated fetuses; f: female 

fetuses; m: male fetuses. n numbers are given for male and female (m/f) fetuses separately. 

n(heart): c=6 (3/3), IGF2=5 (3/2); n(lungs): c=5 (2/3), IGF2=5 (1/4); n(liver): c=8 (3/5), 

IGF2=7 (4/3); n(stomach): c=6 (3/4), IGF2=7 (4/3).  

 

Figure 3: mRNA expression of insulin/IGF-axis components in liver from IGF2 administered 

fetuses compared to saline injected ones. Data are expressed as fold change (mean ± SEM) in 

IGF2-treated fetuses relative to controls (=1) for each target gene. A. Fold change mRNA 

without separation between males and females: n=8 for both groups with each fetus deriving 

from a different mother. B. Fold change mRNA with sex dependency, females: open bars 

(n=5/3 control/IGF2 treated fetuses), males: grey bars (n=3/4 control/IGF2 treated fetuses). 

Statistical test: t-student, * indicates p<0.05, ** indicates p<0.01 vs the respective saline 

treated controls of the same sex 
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Table 1. Weight of saline (control) or IGF2 treated fetuses and fetal organs at 
day 21.  
 

 controls IGF2 Significance 

Fetus [g] 3.00 ± 0.10 3.28 ± 0.12 p=0.09 

Heart [mg] 17.8 ± 1.2 18.2 ± 1.0 n.s. 

Lungs [mg] 72.2 ± 3.2 71.2 ± 2.0 n.s. 

Kidneys [mg] 18.1 ± 1.0 19.9 ± 0.9 n.s. 

Liver [mg] 202.0 ± 9.5 223.5 ± 8.0 n.s. 

Stomach [mg] 22.6 ± 1.5 30.2 ± 2.1 p<0.01 

Intestine [mg] 62.0 ± 3.5 73.0 ± 4.0 p=0.05 

Pancreas [mg] 16.2 ± 1.2 19.6 ± 1.6 n.s. 

 

Data are given as mean ± SEM. n.s.: not significant. n=20 fetuses (male/female: 10/10) for all organs, 
from 14 different mothers.  
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Table 2. Changes in gene expression of insulin/IGF-axis in organs between saline 
and IGF2 treated fetuses.  
 

 Heart Lungs Liver Stomach 

Igf1 1.5 ± 0.2 0.7 ± 0.3 4.0 ± 0.5 * 1.7 ± 0.5 

Igf2 1.0 ± 0.2 0.7 ± 0.5 1.4 ± 0.6 0.9 ± 0.2 

Igf1r 0.8 ± 0.4 13.0 ± 0.8 ** 7.0 ± 0.6 ** 2.3 ± 0.5 * 

Igf2r 0.9 ± 0.2 0.2 ± 0.6 * 1.6 ± 0.4 1.3 ± 0.6 

Insr 1.1 ± 0.5 0.6 ± 0.5 6.2 ± 0.7 * 1.0 ± 0.2 

Igfbp1 0.7 ± 0.4 7.0 ± 0.7 * 1.3 ± 0.5 1.2 ± 0.4 

Igfbp2 0.6 ± 0.4 1.2 ± 0.4 1.1 ± 0.7 1.5 ± 0.6 

Igfbp3 0.8 ± 0.2 1.6 ± 0.6 1.6 ± 0.5 2.2 ± 0.3 * 

Data are given as fold change vs control ± SEM. * p<0.05; **p<0.01; ***p<0.001. n(heart)=6/6, 

n(lungs)=5/5, n(liver)=10/10, n(stomach)=6/7 control/IGF2 treated fetuses.  
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