24 research outputs found

    Assemblage de films polymères par réaction click électrocontrôlée

    Get PDF
    Les multicouches de polyélectrolytes, systèmes auto-assemblés par adsorptions successives de polycations et polyanions, peinent à trouver des applications concrètes en raison de leur fragilité mécanique et du temps nécessaire à leur assemblage. Pour améliorer leur tenue mécanique, nous avons développé une méthode d'assemblage couche-par-couche par liaisons covalentes de films polymères. Des films formés de polymères portant des groupements alcynes et azides ont ainsi été réticulés par une réaction click catalysée par les ions Cu+ obtenus par voie électrochimique. Pour améliorer le mode d'assemblage, l'auto-construction en une seule étape de films par approche morphogénique, a été développée. Cette approche, confinée à la surface et caractérisée par la présence en solution de l'ensemble des constituants, marque une rupture. Elle permet ainsi un contrôle spatial de l'assemblage des films et la combinaison de plusieurs modes d'interactions pendant leur assemblage. Des films dont la cohésion repose sur des interactions covalentes, hôtes-invités et supramoléculaires, ont ainsi été assemblés. L'introduction de nanoparticules métalliques dans les films (multicouches et auto-construits) a également été effectuée dans le but de développer des électrodes de grande surface spécifique.Polyelectrolyte multilayer films, built by alternated adsorption of polycations and polyanions, face two main challenges: their construction process is tedious and their mechanical stability is poor. We developped a layer-by-layer strategy to improve the film stability by covalent reticulation of the polymers chains by click chemistry. Polymers bearing alkyne and azide functions were reticulated by triggering electrochemically the production of Cu+ catalyst ions. A one pot morphogen driven self-construction strategy was also developped to improve the buildup process of the films.In this case, all the constituants are simultaneously present in solution while the film grows up only at the electrode. Films based on covalent, host-guest and supramolecular interactions were obtained and the possibility of combining different interactions was also demonstrated. Nanoparticles were also included in layer-by-layer and self-constructed films in order to improve the electrode specific area.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Polymer multilayer films obtained by electrochemically catalyzed click chemistry.

    Get PDF
    We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.journal articleresearch support, non-u.s. gov't2010 Feb 16importe

    Polymer film construction by electrochemically triggered click chemistry

    No full text
    Les multicouches de polyélectrolytes, systèmes auto-assemblés par adsorptions successives de polycations et polyanions, peinent à trouver des applications concrètes en raison de leur fragilité mécanique et du temps nécessaire à leur assemblage. Pour améliorer leur tenue mécanique, nous avons développé une méthode d'assemblage couche-par-couche par liaisons covalentes de films polymères. Des films formés de polymères portant des groupements alcynes et azides ont ainsi été réticulés par une réaction click catalysée par les ions Cu+ obtenus par voie électrochimique. Pour améliorer le mode d'assemblage, l'auto-construction en une seule étape de films par approche morphogénique, a été développée. Cette approche, confinée à la surface et caractérisée par la présence en solution de l'ensemble des constituants, marque une rupture. Elle permet ainsi un contrôle spatial de l'assemblage des films et la combinaison de plusieurs modes d'interactions pendant leur assemblage. Des films dont la cohésion repose sur des interactions covalentes, hôtes-invités et supramoléculaires, ont ainsi été assemblés. L'introduction de nanoparticules métalliques dans les films (multicouches et auto-construits) a également été effectuée dans le but de développer des électrodes de grande surface spécifique.Polyelectrolyte multilayer films, built by alternated adsorption of polycations and polyanions, face two main challenges: their construction process is tedious and their mechanical stability is poor. We developped a layer-by-layer strategy to improve the film stability by covalent reticulation of the polymers chains by click chemistry. Polymers bearing alkyne and azide functions were reticulated by triggering electrochemically the production of Cu+ catalyst ions. A one pot morphogen driven self-construction strategy was also developped to improve the buildup process of the films.In this case, all the constituants are simultaneously present in solution while the film grows up only at the electrode. Films based on covalent, host-guest and supramolecular interactions were obtained and the possibility of combining different interactions was also demonstrated. Nanoparticles were also included in layer-by-layer and self-constructed films in order to improve the electrode specific area

    Assemblage de films polymères par réaction click électrocontrôlée

    No full text
    Polyelectrolyte multilayer films, built by alternated adsorption of polycations and polyanions, face two main challenges: their construction process is tedious and their mechanical stability is poor. We developped a layer-by-layer strategy to improve the film stability by covalent reticulation of the polymers chains by click chemistry. Polymers bearing alkyne and azide functions were reticulated by triggering electrochemically the production of Cu+ catalyst ions. A one pot morphogen driven self-construction strategy was also developped to improve the buildup process of the films.In this case, all the constituants are simultaneously present in solution while the film grows up only at the electrode. Films based on covalent, host-guest and supramolecular interactions were obtained and the possibility of combining different interactions was also demonstrated. Nanoparticles were also included in layer-by-layer and self-constructed films in order to improve the electrode specific area.Les multicouches de polyélectrolytes, systèmes auto-assemblés par adsorptions successives de polycations et polyanions, peinent à trouver des applications concrètes en raison de leur fragilité mécanique et du temps nécessaire à leur assemblage. Pour améliorer leur tenue mécanique, nous avons développé une méthode d'assemblage couche-par-couche par liaisons covalentes de films polymères. Des films formés de polymères portant des groupements alcynes et azides ont ainsi été réticulés par une réaction click catalysée par les ions Cu+ obtenus par voie électrochimique. Pour améliorer le mode d'assemblage, l'auto-construction en une seule étape de films par approche morphogénique, a été développée. Cette approche, confinée à la surface et caractérisée par la présence en solution de l'ensemble des constituants, marque une rupture. Elle permet ainsi un contrôle spatial de l'assemblage des films et la combinaison de plusieurs modes d'interactions pendant leur assemblage. Des films dont la cohésion repose sur des interactions covalentes, hôtes-invités et supramoléculaires, ont ainsi été assemblés. L'introduction de nanoparticules métalliques dans les films (multicouches et auto-construits) a également été effectuée dans le but de développer des électrodes de grande surface spécifique

    A Comprehensive Microstructural Analysis of Al-WC micro- and Nano-composites Prepared by Spark Plasma Sintering

    Get PDF
    There have been many investigations on metal matrix microcomposites produced by conventional casting routes; however, in the past decade, the focus has shifted more toward nanocomposites produced via solid state routes. To have a realistic view of performance prediction and optimum design of such composites, in this work Al matrix composites (AMCs) reinforced with WC microparticles, nanoparticles, and bimodal micro-/nano-particles were prepared by spark plasma sintering. The effects of particle size and concentration, and process variables (i.e. sintering temperature, duration, and pressure) on the evolution of microstructure, density and hardness of the composites were studied comprehensively. Full densification of AMCs with high particle concentration was problematic because of ceramic cluster formations in the microstructure. This effect was more emphasized in AMCs containing nanoparticles. AMCs with microparticles were more easily densified, but their hardness benefits were inferior. On the other hand, the mixture of micro- and nano-particles in Al-WC bimodal composites led to better matrix reinforcement integrity and an overall improvement in the microstructural properties. Finally, increasing the sintering temperature improved the microstructural features and hardness of the composites (more enhanced in high wt.% samples), but sintering duration and pressure did not have a big impact on the composite properties

    Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements

    No full text
    International audienceThe ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation

    A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al?B4C composites produced by semisolid stir casting

    No full text
    In this study, composites of aluminum alloy 6063 reinforced with 10 wt.% boron carbide microparticles were successfully fabricated by a combination of spark plasma sintering and stir casting methods, followed by hot extrusion. A systematic study on the relationship between extrusion process variables (i.e. extrusion ratio, temperature, and punch speed) and porosity, particle refinement, particle distribution and consequently tensile properties and fracture behavior of the composites was performed. Extensive electron microscopy analysis and tensile testing of the composites revealed a multifactoral interdependency of microstructural evolution and mechanical properties on the extrusion process variables. For example, while increasing the extrusion ratio at higher temperatures led to moderate particle refinement, better densification of the composites, and improvement in mechanical properties, concurrent particle fragmentation and microvoid formation around the particles at lower temperatures had opposing effects on the mechanical behavior. We show that the dependency of mechanical properties on all such microstructural factors makes it difficult to predict optimum extrusion conditions in aluminum matrix composites. That is, unlike the common approach, extruding the composites at higher temperatures and achieving more reduction in area may not necessarily lead to the most favorable mechanical properties

    A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al-B4C composites produced by semisolid stir casting

    Get PDF
    In this study, composites of aluminum alloy 6063 reinforced with 10 wt% boron carbide microparticles were successfully fabricated by a combination of spark plasma sintering and stir casting methods, followed by hot extrusion. A systematic study on the relationship between extrusion process variables (i.e. extrusion ratio, temperature, and punch speed) and porosity, particle refinement, particle distribution and consequently tensile properties and fracture behavior of the composites was performed. Extensive electron microscopy analysis and tensile testing of the composites revealed a multifactoral interdependency of microstructural evolution and mechanical properties on the extrusion process variables. For example, while increasing the extrusion ratio at higher temperatures led to moderate particle refinement, better densification of the composites, and improvement in mechanical properties, concurrent particle fragmentation and microvoid formation around the particles at lower temperatures had opposing effects on the mechanical behavior. We show that the dependency of mechanical properties on all such microstructural factors makes it difficult to predict optimum extrusion conditions in aluminum matrix composites. That is, unlike the common approach, extruding the composites at higher temperatures and achieving more reduction in area may not necessarily lead to the most favorable mechanical properties

    Oligomer Sensor Nanoarchitectonics for “Turn-On” Fluorescence Detection of Cholesterol at the Nanomolar Level

    No full text
    International audienceSensitive and rapid monitoring of cholesterol levels in the human body are highly desirable as they are directly related to the diagnosis of cardiovascular diseases. By using the nanoarchitectonic approach, a novel fluorescent conjugated oligofluorene (OFP-CD) functionalized with β-cyclodextrin (β-CD) was assembled for “Turn-On” fluorescence sensing of cholesterol. The appended β-CD units in OFP-CD enabled the forming of host-guest complexes with dabsyl chloride moieties in water, resulting in fluorescence quenching of the oligofluorene through intermolecular energy transfer. In the presence of cholesterol molecules, a more favorable host-guest complex with stoichiometry 1 cholesterol: 2 β-CD units was formed, replacing dabsyl chloride in β-CD’s cavities. This process resulted in fluorescence recovery of OFP-CD, owing to disruption of energy transfer. The potential of this nanoarchitectonic system for “Turn-On” sensing of cholesterol was extensively studied by fluorescence spectroscopy. The high selectivity of the sensor for cholesterol was demonstrated using biologically relevant interfering compounds, such as carbohydrates, amino acids, metal ions, and anions. The detection limit (LOD value) was as low as 68 nM, affirming the high sensitivity of the current system

    Electro-click construction of hybrid nanocapsule films with triggered delivery properties

    No full text
    International audienceHollow nanocapsules (named Hybridosomes®) possessing a polymer/nanoparticle shell were used to covalently construct hybrid films in a one-pot fashion. The alkyne bearing organic/inorganic Hybridosomes® were reticulated with azide bearing homobifunctional polyethyleneglycol (PEG) linkers, by using an electro-click reaction on F-SnO2 (FTO) electrodes. The coatings were obtained by promoting the Cu(i)-catalyzed click reaction between alkyne and azide moieties in the vicinity of the electrode by the electrochemical generation of Cu(i) ions. The physicochemical properties of the covalently reticulated hybrid films obtained were studied by SEM, AFM, UV-vis and fluorescence spectroscopy. The one-pot covalent click reaction between the nanocapsules and the PEG linkers in the film did not affect the desirable features of the Hybridosomes® i.e. their hollow nanostructure their chemical versatility and their pH-sensitivity. Consequently, both the composition and the cargo-loading of the Hybridosomes® films could be tuned, demonstrating the versatility of these hybrid coatings. For example, the Hybridosome® films were used to encapsulate and release a bodipy fluorescent probe in response to either a pH drop or the application of an oxidative +1 V potential (vs. Ag/AgCl) at the substrate. By advancing the field of electro-synthesized films a step further toward the design of complex physicochemical interfaces, these results open perspectives for multifunctional coatings where chemical versatility, controllable stability and a hollow nanostructure are required
    corecore