156 research outputs found
Models to study basic and applied aspects of lysosomal storage disorders
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The lack of available treatments and fatal outcome in most lysosomal storage disorders (LSDs) have spurred research on pathological mechanisms and novel therapies in recent years. In this effort, experimental methodology in cellular and animal models have been developed, with aims to address major challenges in many LSDs such as patient-to-patient variability and brain condition. These techniques and models have advanced knowledge not only of LSDs but also for other lysosomal disorders and have provided fundamental insights into the biological roles of lysosomes. They can also serve to assess the efficacy of classical therapies and modern drug delivery systems. Here, we summarize the techniques and models used in LSD research, which include both established and recently developed in vitro methods, with general utility or specifically addressing lysosomal features. We also review animal models of LSDs together with cutting-edge technology that may reduce the need for animals in the study of these devastating diseases.This work was supported by the Spanish Ministry of Science and Innovation (PID2020-112830RB-I00) (AEI/FEDER, UE) and the NextGeneration EU-CSIC funds (NeuroAging)info:eu-repo/semantics/publishedVersio
Reconceptualising Personas Across Cultures: Archetypes, Stereotypes & Collective Personas in Pastoral Namibia
The paucity of projects where persona is the research foci and a lack of consensus on this artefact keep many reticent about its purpose and value. Besides crafting personas is expected to differ across cultures, which contrasts the advancements in Western theory with studies and progress in other sites. We postulate User-Created Personas reveal specific characteristics of situated contexts by allowing laypeople to design persona artefacts in their own terms. Hence analysing four persona sessions with an ethnic group in pastoral Namibia –ovaHerero– brought up a set of fundamental questions around the persona artefact regarding stereotypes, archetypes, and collective persona representations: (1) to what extent user depictions are stereotypical or archetypal? If stereotypes prime (2) to what degree are current personas a useful method to represent end-users in technology design? And, (3) how can we ultimately read accounts not conforming to mainstream individual persona descriptions but to collectives
In vitro faecal fermentation of Tritordeum breads and its effect on the human gut health
Spontaneous fermentation of Tritordeum flour enhances the nutritional potential of this hybrid cereal. However, the effect of consumption of Tritordeum sourdough bread (SDB) on gut health remains to be elucidated. This study investigated the effect of in vitro digestion and faecal fermentation of SDB compared to that of traditional baker's yeast (BYB) Tritordeum bread. After 24-h anaerobic faecal fermentation, both SDB and BYB (1% w/v) induced an increase in the relative abundances of Bifidobacterium, Megasphaera, Mitsuokella, and Phascolarctobacterium genera compared to baseline, while concentrations of acetate and butyrate were significantly higher at 24 h for SDB compared to those for BYB. Integrity of intestinal epithelium, as assessed through in vitro trans-epithelial electrical resistance (TEER) assay, was slightly increased after incubation with SDB fermentation supernatants, but not after incubation with BYB fermentation supernatants. The SDB stimulated in vitro mucosal immune response by inducing early secretion of inflammatory cytokines, IL-6 and TNF-α, followed by downregulation of the inflammatory trigger through induction of anti-inflammatory IL-10 expression. Overall, our findings suggest that Tritordeum sourdough can modulate gut microbiota fermentation activity and positively impact the gut health
Bariatric surgery and diabetes remission: Sleeve gastrectomy or mini-gastric bypass?
AIM:
To investigate the weight loss and glycemic control status [blood glucose, hemoglobin A1c (HbA1c) and hypoglycaemic treatment].
METHODS:
The primary risk factor for type 2 diabetes is obesity, and 90% of all patients with type 2 diabetes are overweight or obese. Although a remarkable effect of bariatric surgery is the profound and durable resolution of type 2 diabetes clinical manifestations, little is known about the difference among various weight loss surgical procedures on diabetes remission. Data from patients referred during a 3-year period (from January 2009 to December 2011) to the University of Naples "Federico II" diagnosed with obesity and diabetes were retrieved from a prospective database. The patients were split into two groups according to the surgical intervention performed [sleeve gastrectomy (SG) and mini-gastric bypass (MGB)]. Weight loss and glycemic control status (blood glucose, HbA1c and hypoglycaemic treatment) were evaluated.
RESULTS:
A total of 53 subjects who underwent sleeve gastrectomy or mini-gastric bypass for obesity and diabetes were screened for the inclusion in this study. Of these, 4 subjects were excluded because of surgical complications, 7 subjects were omitted because young surgeons conducted the operations and 11 subjects were removed because of the lack of follow-up. Thirty-one obese patients were recruited for this study. A total of 15 subjects underwent SG (48.4%), and 16 underwent MGB (51.6%). After adjusting for various clinical and demographic characteristics in a multivariate logistic regression analysis, high hemoglobin A1c was determined to be a negative predictor of diabetes remission at 12 mo (OR = 0.366, 95%CI: 0.152-0.884). Using the same regression model, MGB showed a clear trend toward higher diabetes remission rates relative to SG (OR = 3.780, 95%CI: 0.961-14.872).
CONCLUSION:
Although our results are encouraging regarding the effectiveness of mini-gastric bypass on diabetes remission, further studies are needed to provide definitive conclusions in selecting the ideal procedure for diabetes remission
New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2-positive subjects
Purpose: To estimate the prevalence of smell or taste impairment in household contacts of mildly symptomatic home-isolated SARS-CoV-2-positive patients. Methods: Cross-sectional study based on ad hoc questions. Results: Of 214 mildly symptomatic COVID-19 patients managed at home under self-isolation, 179 reported to have at least one household contact, with the total number of no study participants contacts being 296. Among 175 household contacts not tested for SARS-CoV-2 infection, 67 (38.3%) had SARS-CoV-2 compatible symptoms, 39 (22.3%) had loss of smell or taste with 7 (4.0%) having loss of smell or taste in the absence of other symptoms. The prevalence of smell or taste impairment was 1.5% in patients tested negative compared to 63.0% of those tested positive for SARS-CoV-2 (p < 0.001). Conclusion: Smell or taste impairment are quite common in not-tested household contacts of mildly symptomatic home-isolated SARS-CoV-2-positive patients. This should be taken into account when estimating the burden of loss of sense of smell and taste during COVID-19 pandemic, and further highlights the value of loss of sense of smell and taste as a marker of infection
Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires
We introduce a theoretical approach based on scattering theory and total
energy methods that treats transport non-linearities, conformational changes
and charging effects in molecular wires in a unified way. We apply this
approach to molecular wires consisting of chain molecules with different
electronic and structural properties bonded to metal contacts. We show that
non-linear transport in all of these systems can be understood in terms of a
single physical mechanism and predict that negative differential resistance at
high bias should be a generic property of such molecular wires.Comment: 9 pages, 4 figure
A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species
Background
A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined.
Results
Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate.
Conclusions
Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species
Bronchoalveolar Lavage-microRNAs Are Potential Novel Biomarkers of Outcome after Lung Transplantation
Background. Primary graft dysfunction, infections, and acute rejection (AR) worsen lung transplantation (LTx) outcome and patient survival. Despite significant efforts, reliable biomarkers of acute lung allograft dysfunction are lacking. To address this issue, we profiled the bronchoalveolar lavage (BAL) miRNome in LTx patients. Methods. BAL-microRNAs (miRNAs) from 16 patients were collected 7 days (T0), 15 days (T1), and 3 months (T2) after bilateral LTx and profiled on low-density array. Unsupervised and supervised analyses were used to identify miRNAs associated with clinical features, pneumonia, or AR. Prognostic markers were identified using the Cox model. Targeted signaling pathways were predicted in silico. A second series of 11 patients were used to validate AR-associated miRNAs. Results. Variation in BAL-miRNAs was associated with acute lung allograft dysfunction. Increased levels of miR-23b-3p at T2 were detected in patients with pneumonia, whereas let-7f-5p, miR-146b-3p, miR-22-5p, miR-29c-5p, miR-362-5p, and miR-452-5p were upregulated at T2 in patients with AR. miR-148b-5p and miR-744-3p distinguished LTx patients with AR in both cohorts. Low miR-148b-5p and high miR-744-3p expression levels were significantly associated with a shorter time to AR either within the first year after LTx or during follow-up. Combination of the 2 miRNAs identified LTx patients with higher AR risk independently of clinical variables. Conclusions. Our data provide new insights into the roles of BAL-miRNAs in regulating the pulmonary environment after transplantation and suggest that these miRNAs could serve as biomarkers of early- or mid-stage events. If validated, these findings could pave the way to a personalized clinical approach in LTx patients
Cytosolic phosphorylated EGFR is predictive of recurrence in early stage penile cancer patients: A retropective study
Background: Penile cancer (PC) is a rare tumor, and therapeutic options are limited for this disease, with an overall 5-year overall survival around 65-70%. Adjuvant therapy is not recommended for patients with N0-1 disease, despite up to 60% of these patients will die within 5 years from diagnosis.
Methods: Medical records of all patients who underwent radical surgery at University Federico II of Naples and at National Tumor Institute "Pascale" of Naples for early squamous cell carcinoma of the penis from January, 2000 to December, 2011 were retrieved. Paraffin wax embedded tissue specimens were retrieved from the pathology archives of the participating Institutions for all patients. Expression of p-EGFR, EGFR and positivity to HPV were evaluated along with other histological variables of interest. Demographic data of eligible patients were retrieved along with clinical characteristics such as type of surgical operation, time of follow up, time of recurrence, overall survival. A multivariable model was constructed using a forward stepwise selection procedure.
Results: Thirty eligible patients were identified. All patients were positive for EGFR by immunohistochemistry, while 13 and 16 were respectively positive for nuclear and cytosolic p-EGFR. No EGFR amplification was detected by FISH. Eight patients were positive for high-risk HPV by ISH. On univariable analysis, corpora cavernosa infiltration (OR 7.8; 95% CI = 0,8 to 75,6; P = 0,039) and positivity for cytosolic p-EGFR (OR 7.6; 95% CI = 1.49 to 50; P = 0.009) were predictive for recurrence, while only positivity for cytosolic p-EGFR (HR = 9.0; 95% CI 1.0-100; P = 0,0116) was prognostic for poor survival.
Conclusion: It is of primary importance to identify patients with N0-1 disease who are at increased risk of recurrence, as they do not normally receive any adjuvant therapy. Expression of p-EGFR was found in this series to be strongly related to increase risk of recurrence and shorter overall survival. This finding is consistent with the role of p-EGFR in other solid malignancies. Integration of p-EGFR with classic prognostic factors and other histology markers should be pursued to establish optimal adjuvant therapy for N0-1 PC patients
Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development
The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula β-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing β-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development
- …