131 research outputs found

    Ultrafast magnetization switching by spin-orbit torques

    Full text link
    Spin-orbit torques induced by spin Hall and interfacial effects in heavy metal/ferromagnetic bilayers allow for a switching geometry based on in-plane current injection. Using this geometry, we demonstrate deterministic magnetization reversal by current pulses ranging from 180~ps to ms in Pt/Co/AlOx dots with lateral dimensions of 90~nm. We characterize the switching probability and critical current IcI_c as function of pulse length, amplitude, and external field. Our data evidence two distinct regimes: a short-time intrinsic regime, where IcI_c scales linearly with the inverse of the pulse length, and a long-time thermally assisted regime where IcI_c varies weakly. Both regimes are consistent with magnetization reversal proceeding by nucleation and fast propagation of domains. We find that IcI_c is a factor 3-4 smaller compared to a single domain model and that the incubation time is negligibly small, which is a hallmark feature of spin-orbit torques

    Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

    Full text link
    Current-induced spin torques are of great interest to manipulate the orientation of nanomagnets without applying external magnetic fields. They find direct application in non-volatile data storage and logic devices, and provide insight into fundamental processes related to the interdependence between charge and spin transport. Recent demonstrations of magnetization switching induced by in-plane current injection in ferromagnetic heterostructures have drawn attention to a class of spin torques based on orbital-to-spin momentum transfer, which is alternative to pure spin transfer torque (STT) between noncollinear magnetic layers and amenable to more diversified device functions. Due to the limited number of studies, however, there is still no consensus on the symmetry, magnitude, and origin of spin-orbit torques (SOTs). Here we report on the quantitative vector measurement of SOTs in Pt/Co/AlO trilayers using harmonic analysis of the anomalous and planar Hall effects as a function of the applied current and magnetization direction. We provide an all-purpose scheme to measure the amplitude and direction of SOTs for any arbitrary orientation of the magnetization, including corrections due to the interplay of Hall and thermoelectric effects. Based on general space and time inversion symmetry arguments, we show that asymmetric heterostructures allow for two different SOTs having odd and even behavior with respect to magnetization reversal. Our results reveal a scenario that goes beyond established models of the Rashba and spin Hall contributions to SOTs. The even SOT is STT-like but stronger than expected from the spin Hall effect in Pt. The odd SOT is composed of a constant field-like term and an additional component, which is strongly anisotropic and does not correspond to a simple Rashba field.Comment: Supplementary Informations follows Paper in the .pdf fil

    Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures

    Get PDF
    The nucleation of reversed magnetic domains in Pt/Co/AlOx_{x} microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. An explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.Comment: Published version, Physical Review Letters 113, 047203 (2014

    Direct Observation of Massless Domain Wall Dynamics in Nanostripes with Perpendicular Magnetic Anisotropy

    Get PDF
    Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlOx_x) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low 'mass' of these domain walls is attributed to the combination of their narrow width and high damping parameter α\alpha. Such a small inertia should allow accurate control of domain wall motion, by tuning the duration and amplitude of the current pulses

    Chiral damping of magnetic domain walls

    Full text link
    Structural symmetry breaking in magnetic materials is responsible for a variety of outstanding physical phenomena. Examples range from the existence of multiferroics, to current induced spin orbit torques (SOT) and the formation of topological magnetic structures. In this letter we bring into light a novel effect of the structural inversion asymmetry (SIA): a chiral damping mechanism. This phenomenon is evidenced by measuring the field driven domain wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The difficulty in evidencing the chiral damping is that the ensuing DW dynamics exhibit identical spatial symmetry to those expected from the Dzyaloshinskii-Moriya interaction (DMI). Despite this fundamental resemblance, the two scenarios are differentiated by their time reversal properties: while DMI is a conservative effect that can be modeled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing to distinguish the physical mechanism. The observation of the chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexists with DMI it is essential for conceiving DW and skyrmion devices

    Direct observation of Oersted-field-induced magnetization dynamics in magnetic nanostripes

    Get PDF
    We have used time-resolved x-ray photoemission electron microscopy to investigate the magnetization dynamics induced by nanosecond current pulses in NiFe/Cu/Co nanostripes. A large tilt of the NiFe magnetization in the direction transverse to the stripe is observed during the pulses. We show that this effect cannot be quantitatively understood from the amplitude of the Oersted field and the shape anisotropy. High frequency oscillations observed at the onset of the pulses are attributed to precessional motion of the NiFe magnetization about the effective field. We discuss the possible origins of the large magnetization tilt and the potential implications of the static and dynamic effects of the Oersted field on current-induced domain wall motion in such stripes.Comment: Published in Phys. Rev. B 83, 020406 (2011) (Rapid Communications

    Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers

    Get PDF
    We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (field-like) and longitudinal (antidamping-like) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the field-like and antidamping torques. Measurements of the switching probability using sub-{\mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 degrees and 270 degrees C

    Exploring the limits of soft x-ray magnetic holography: Imaging magnetization reversal of buried interfaces (invited)

    Full text link
    The following article appeared in Journal of Applied Physics 109.7 (2011): 07D357 and may be found at http://scitation.aip.org/content/aip/journal/jap/109/7/10.1063/1.3567035Only a very few experimental techniques can address the microscopic magnetization reversal behavior of the different magnetic layers in a multilayered system with element selectivity. We present an element-selective study of ferromagnetic (FM) [Co/Pt]n multilayers with perpendicular anisotropy exchange-coupled to antiferromagnetic (AFM) FeMn and IrMn films performed with a new experimental set-up developed for both soft x-ray spectroscopy and holography imaging purposes. The spectroscopy analysis allows the quantification of the unpinned (pinned) uncompensated AFM moments, providing direct evidence of its parallel (antiparallel) alignment with respect to the FM moments. The holography experiments give a direct view of both FM and uncompensated AFM magnetic structures, showing that they replicate to each other during magnetization reversal. Remarkably, we show magnetic images for effective thicknesses as small as one monolayer. Our results provide new microscopic insights into the exchange coupling phenomena and explore the sensitivity limits of these techniques. Future trends are also discussed.We acknowledge technical support by the ESRF staff R. Barrett, R. Homs-Regojo, T. Trenit, and G. Retout. A. B. acknowledges support through a Ramo´n y Cajal contract from the Spanish MICINN. This work was supported in part by the Spanish MICINN through Projects CSD2007-00010, and MAT2010-21822 and by Comunidad de Madrid through Project S2009/MAT-1726.Comunidad de Madrid. S2009/MAT-1726/NANOBIOMAGNE

    The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field

    Full text link
    Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model, with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization

    Gate-Controlled Skyrmion Chirality

    Full text link
    Magnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. In the presence of asymmetric exchange interactions, their chirality, which governs their dynamics, is generally considered as an intrinsic parameter set during the sample deposition. In this work, we experimentally demonstrate that this key parameter can be controlled by a gate voltage. We observed that the current-induced skyrmion motion can be reversed by the application of a gate voltage. This local and dynamical reversal of the skyrmion chirality is due to a sign inversion of the interfacial Dzyaloshinskii-Moriya interaction that we attribute to ionic migration of oxygen under gate voltage. Micromagnetic simulations show that the chirality reversal is a continuous transformation, in which the skyrmion is conserved. This gate-controlled chirality provides a local and dynamical degree of freedom, yielding new functionalities to skyrmion-based logic devices.Comment: 4 figure
    corecore