72 research outputs found

    Phase transitions for the cavity approach to the clique problem on random graphs

    Full text link
    We give a rigorous proof of two phase transitions for a disordered system designed to find large cliques inside Erdos random graphs. Such a system is associated with a conservative probabilistic cellular automaton inspired by the cavity method originally introduced in spin glass theory.Comment: 36 pages, 4 figure

    Testing for differential abundance in mass cytometry data.

    Get PDF
    When comparing biological conditions using mass cytometry data, a key challenge is to identify cellular populations that change in abundance. Here, we present a computational strategy for detecting 'differentially abundant' populations by assigning cells to hyperspheres, testing for significant differences between conditions and controlling the spatial false discovery rate. Our method (http://bioconductor.org/packages/cydar) outperforms other approaches in simulations and finds novel patterns of differential abundance in real data.This work was supported by Cancer Research UK (core funding to J.C.M., award no. A17197), the University of Cambridge and Hutchison Whampoa Limited. J.C.M. was also supported by core funding from EMBL

    Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset

    Get PDF
    Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies

    Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates NeuroD Transcription

    Get PDF
    CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM)

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    Organisms in experimental research

    Get PDF
    Rachel A. Ankeny and Sabina Leonell
    corecore