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Abstract: When comparing biological conditions using mass cytometry data, one 

key challenge is to identify cellular populations that change in abundance. Here, we 

present a novel computational strategy for detecting these “differentially abundant” 

populations, by assigning cells to hyperspheres, testing for significant differences 

between conditions and controlling the spatial false discovery rate. The method’s 

performance is established using simulations and real data where it finds novel 

patterns of differential abundance. 

 

Mass cytometry allows researchers to simultaneously characterise the 

expression of many (> 30) protein markers in each of millions of cells1. Antibodies 

specific to markers of interest are conjugated to heavy metal isotopes and used to 

stain a population of cells. Single-cell droplets are formed and vaporized to ionize the 

metals, and the quantity of each isotope bound to each cell is measured by time-of-

flight mass spectrometry. The resolution of mass spectrometry avoids problems with 

spectral overlap that are frequently encountered in conventional flow cytometry with 

fluorescent markers. This means that more markers can be quantified for each cell, 

improving resolution of distinct subpopulations and enabling deep phenotyping of 

cellular profiles in fields such as immunology, haematopoietic development and 

cancer2, 3, 4, 5, 6. The ability of mass cytometry to assay more markers leads to a 

concomitant increase in the dimensionality of the data. This complicates the data 

analysis as manual gating and visual examination of biaxial plots (as commonly used 

in flow cytometry) are no longer feasible when multiple marker combinations have to 

be considered. To address this, bespoke computational tools such as SPADE7 and 

X-shift8 have been developed, focusing on clustering cells into biologically relevant 

subpopulations based on the “intensity” of each marker (i.e., the signal of the 

corresponding isotope in the mass spectrum) and quantifying the abundance of each 

subpopulation in the total cell pool. However, these approaches fail to directly 

address an important question of multiparameter multi-group experiments – namely, 

what differs between groups?  

To this end, an alternative analytical strategy is to identify subpopulations that 

change in abundance between biological conditions9, 10. For example, certain 

immune compartments are enriched or depleted upon drug treatment, and the 

composition of cell types changes during development. Detection of these 

differentially abundant (DA) subpopulations is useful as it can provide insights into 
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the cause or effect of the biological differences between conditions. Existing 

methods for DA analysis cluster cells from all samples into empirical subpopulations, 

before checking each cluster for characteristics (e.g., marker intensities or cell 

abundance) that differ between conditions11, 12. While intuitive, this approach is 

sensitive to the parametrization of the initial clustering step. Uncertainty will be 

introduced into the cluster definitions when the data are noisy or the cells are not 

clearly separated13. This is particularly relevant for markers that are expressed 

across a range of intensities without clear changes in cellular density at 

subpopulation boundaries, such as CD38 and HLA-DR to mark activated T cells or 

CD24 and CD38 to define plasmablasts among B cells14. Ambiguity in clustering can 

affect the performance of the subsequent DA analysis, e.g., if DA and non-DA 

subpopulations are erroneously clustered together.  

Here, we present a novel computational strategy to perform DA analyses of 

mass cytometry data (Figure 1) that does not rely on an initial clustering step. Firstly, 

we assign cells from all samples to hyperspheres in the multi-dimensional marker 

space. Consider a mass cytometry data set with S samples and M markers. Each 

cell in each sample defines a point in the M-dimensional space, with coordinates 

defined by its intensities. We consider M-dimensional hyperspheres where each 

hypersphere is centred on an existing cell and has radius r=0.5ÖM to offset the 

increasing sparsity of the data as the number of dimensions increases. All cells lying 

within a hypersphere are then assigned to that hypersphere. (Each cell can be 

counted multiple times if it is assigned to overlapping hyperspheres.) We count the 

number of cells from each sample assigned to each hypersphere, yielding S counts 

per hypersphere. For each marker, we also compute its median intensity for all cells 

in each hypersphere. This provides a median-based position for the hypersphere, 

representing a central point in M-dimensional space around which most of the cells 

in the hypersphere are located. See Supplementary Note 1, Supplementary Figures 

1-4 and Supplementary Table 1 for more details. We also assume that marker 

intensities are comparable across samples – some strategies for handling sample-

specific intensity shifts are described in Supplementary Note 2 and Supplementary 

Figures 5-6.  

Next, we use the count data for each hypersphere to test for significant 

differences in cell abundance between conditions. The null hypothesis is that there is 
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no change in the average counts between conditions within each hypersphere. 

Testing is performed with negative binomial generalized linear models (NB GLMs), 

which explicitly account for the discrete nature of counts; model overdispersion due 

to biological variability between replicate samples; and can accommodate complex 

experimental designs involving multiple factors and covariates. We use the NB GLM 

implementation in the edgeR package15, which was originally designed for analyzing 

read count data from RNA sequencing experiments. However, the same 

mathematical framework can be applied here to cell counts. In particular, edgeR 

uses empirical Bayes shrinkage to share information across hyperspheres. This 

improves estimation of the dispersion parameter in the presence of limited replicates, 

increasing the reliability and power of downstream inferences. (See Supplementary 

Note 3 and Supplementary Figures 7-8 for more details.) Indeed, edgeR is more 

powerful than the commonly used Mann-Whitney test for detecting differences in 

hypersphere counts in simulated data, while still controlling the type I error rate 

(Supplementary Figure 9).  

Finally, we use the hypersphere p-values to control the false discovery rate 

(FDR) across the multi-dimensional space, i.e., the spatial FDR. To illustrate, 

consider the total volume occupied by the set of DA hyperspheres. (This is a union 

rather than a sum of the hypersphere volumes, due to overlaps between 

hyperspheres.) Roughly speaking, the spatial FDR can be interpreted as the 

proportion of this volume that is occupied by false positive hyperspheres. This is not 

equivalent to the FDR across the individual hyperspheres, due to the differences in 

the density of hyperspheres across the space. For example, the FDR across 

hyperspheres in Figure 1d is 25% while the spatial FDR across volume is 50%. To 

control the spatial FDR, each hypersphere is weighted by the reciprocal of its density 

(calculated in terms of the neighbouring hyperspheres). A weighted version of the 

Benjamini-Hochberg (BH) method16 is then applied to the p-values and weights for 

all hyperspheres. If one were to split the high-dimensional space into non-

overlapping partitions of equal volume, the total weight of hyperspheres within each 

non-empty partition would be similar, i.e., each partition of the space makes a similar 

contribution to the BH correction, regardless of how many hyperspheres it contains. 

Thus, weighting allows the FDR to be controlled across volume, rather than across 

hyperspheres. (See Supplementary Note 4 and Supplementary Figure 10 for a more 

precise description of the spatial FDR.) We demonstrate that our weighting scheme 
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successfully controls the spatial FDR in simulated data, whereas a naïve approach 

without weighting does not (Supplementary Figure 11).  

Several options are available for examining DA hyperspheres after the 

statistical analysis. We can identify significant hyperspheres that are not redundant 

to – i.e., do not lie within a certain distance of – hyperspheres with smaller p-values 

(Supplementary Note 5). The resulting subset of hyperspheres is small enough for 

detailed inspection of the marker intensities with a graphical interface 

(Supplementary Figure 12) to characterise each hypersphere. A complementary 

approach is to perform dimensionality reduction on the positions of the putative DA 

hyperspheres, yielding a low-dimensional representation of the differential 

subspaces for plotting. The plot is annotated based on examination of the marker 

intensities, incorporating biological expertise on the relationships between specific 

markers and cell types. This allows identification of biologically relevant 

subpopulations from the DA hyperspheres.  

We demonstrate our approach using data from a study of mouse embryonic 

fibroblast (MEF) reprogramming17. In this study, three transgenic MEF reporter 

systems (Oct4-GFP, Nanog-GFP or Nanog-Neo) were reprogrammed to induced 

pluripotent stem cells. Samples were collected across various points of the 

reprogramming time course for each MEF reprogramming system. We applied our 

method to each time course to detect changes in abundance over time, defining 

putative DA hyperspheres as those detected at a spatial FDR of 5%. In this manner, 

we detected 7416, 5947 and 21532 DA hyperspheres in the Oct4-GFP, Nanog-GFP 

and Nanog-Neo time courses, respectively. We applied t-SNE18 to the positions of 

detected hyperspheres to visualize them in a spatial context (Figure 2, 

Supplementary Figures 13-18). In the Oct4-GFP analysis, we recovered previously 

identified DA subpopulations, including the three reprogramming end points; as well 

as distinct DA subpopulations that were not clearly characterised in the original 

analysis, such as a subpopulation of SC4-like cells with phosphorylated STAT3, 

AMPK and PLK1 that exhibited a non-linear change in abundance over time 

(Supplementary Figure 19) – see Supplementary Note 6 for details.  

We also applied our method on another data set examining the effect of 

interleukin 10 (IL-10) treatment on bone marrow mononuclear cells (BMMCs) across 

five healthy donors6. Importantly, this data set contained matched stimulated and 

unstimulated samples from each donor. This experimental design is easily 
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accommodated by the GLM machinery in edgeR, highlighting the flexibility of our 

framework. We observed changes in abundance associated with phosphorylated 

STAT3 expression, consistent with the expected biology of IL-10, as well as several 

interesting DA subpopulations that were not identified by the original study (see 

Supplementary Note 7, Supplementary Figures 20-21 for details). More generally, 

shifts in marker intensity for signalling molecules or activation markers will cause 

changes in abundance that can be detected by the DA analysis (Supplementary 

Note 8, Supplementary Figure 22).  

Finally, we compared our approach to CITRUS12, an existing method that 

uses an initial clustering step for comparative analysis of mass cytometry data. We 

simulated a simple scenario involving two adjacent subpopulations with opposite 

changes in abundance between conditions (Supplementary Note 9, Supplementary 

Figure 23). These subpopulations were consistently detected as being differentially 

abundant by our hypersphere-based method but not by CITRUS. We also tested the 

performance of CITRUS for detecting differentially abundant subpopulations across 

time in the MEF reprogramming data set. CITRUS did not detect a number of 

subpopulations that were found by our method (Supplementary Figure 24), nor did it 

detect any new subpopulations. This suggests that the use of hyperspheres, in 

combination with edgeR and the spatial FDR, can improve detection of subtle 

changes in abundance within complex subpopulations that are difficult to cluster.  

As mass cytometry becomes more accessible, large-scale experiments 

containing many conditions and replicates are likely to become increasingly routine. 

Indeed, a growing number of studies are using mass cytometry in fields such as 

immunology, haematopoietic development and cancer. We anticipate that our 

differential abundance analysis pipeline will be useful to researchers planning to 

perform comparative studies with such data sets.  
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Figure legends 

 

Figure 1: Schematic of the differential abundance pipeline. (a) Cells from samples 1 

or 2 are distributed across the multi-dimensional marker space (two markers shown 

here for simplicity). Hyperspheres (yellow, h1-h4) centred on selected cells are 

constructed, and the number of cells from each sample inside each hypersphere is 

counted. (b) Counts for each hypersphere are tested for significant differences 

between samples. This yields a p-value representing the evidence against the null 

hypothesis of no differences. (c) Multiple testing correction of hypersphere p-values 

is performed by controlling the spatial FDR. Positions of significant hyperspheres at 

a given spatial FDR threshold are visualized by dimensionality reduction (e.g., PCA). 

(d) The spatial FDR is roughly equivalent to the proportion of the volume occupied by 

false positive hyperspheres. Each hypersphere has a median-based position (small 

circles) and occupies a volume of the high-dimensional space (shown as the dotted 

ring for two hyperspheres). The total occupied volume is the union of individual 

hypersphere volumes. Two groups of hyperspheres are shown – one containing true 

positives with genuine differences in abundance, the other containing false positives 

– that occupy a similar total volume V with different densities.  

 

Figure 2: Differentially abundant subpopulations in the Oct4-GFP time course, 

detected at a spatial FDR of 5%. (a) A t-SNE plot of the median positions of DA 

hyperspheres. Each point represents a hypersphere and is coloured according to its 

average log-fold change in abundance over time. Grey points represent 

hyperspheres with significant but non-linear changes in abundance. Subpopulations 

were annotated based on results in Zunder et al.17, with additional distinguishing 

features for each subpopulation noted in parentheses. OSKM: reprogramming 

factors (OCT4, SOX2, KLF4, c-MYC), NE: non-expressing, MET: mesenchymal-

epithelial transition, SC4: partially reprogrammed cell line, ESC: embryonic stem 

cells, mixed 4F: mixed stoichiometry of the OSKM factors. (b) The same plots 
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coloured by the median intensity of selected markers in each hypersphere. The 

colour range for each marker was bounded at the 1st and 99th percentiles of the 

intensities across all cells.  
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Online Methods 

 

Data preparation 

In this section, we describe the processing of data from the MEF 

reprogramming study17. For processing of data from the BMMC study6, see 

Supplementary Note 7 for details.  

We obtained de-barcoded flow cytometry standard (FCS) files for each time 

course from Cytobank (accession number 43324). We applied the logicle 

transformation19 to the marker intensities in each sample. The transformation 

parameters were estimated with the estimateLogicle function from the flowCore 

package20, using pooled cells from all samples in each time course. (This avoids 

spurious differences from sample-specific transformation.) We gated out cell events 

with low intensities for the two DNA markers (Iridium-191 and 193), where the 

threshold was defined as three median absolute deviations below the median 

intensity for the pooled cells. We saved the transformed and gated intensities into 

new FCS files for processing with our pipeline. Only the intensities for relevant 

markers (i.e., no DNA, barcodes) were used for further analysis. Note that 

normalization of marker intensities between samples is not required for this data set 

because the samples in each time course were barcoded and pooled for antibody 

staining and mass cytometry.  

 

Statistical methods for testing differences 

To compute p-values, hypersphere counts were analyzed using the quasi-

likelihood (QL) method in edgeR. First, we filtered out hyperspheres with an average 

count below 5. This improves efficiency by removing tests without enough 

information to reject the null hypothesis. For the remaining hyperspheres, we fitted a 

mean-dependent trend to the NB dispersion estimates. We fitted a NB GLM to the 

counts for each hypersphere, using the trended dispersion for each hypersphere and 

the log-transformed total number of cells as the offset for each sample. We 

estimated the QL dispersion from the GLM deviance and stabilized the estimates by 

empirical Bayes shrinkage towards a second mean-dependent trend. Finally, we 

used the QL F-test with a specified contrast to compute a p-value for each 

hypersphere. Details of the statistical framework are provided in Supplementary Note 

3.  



 11 

For the time course analyses, we used a design matrix constructed from a B-

spline basis matrix with a time covariate and 3 degrees of freedom. This provided 9, 

11 and 10 residual degrees of freedom for dispersion estimation in the Oct4-GFP, 

Nanog-GFP and Nanog-Neo data sets, respectively. Contrasts were constructed to 

test whether all spline coefficients were equal to zero. This represents a null 

hypothesis that time has no effect on abundance. The use of splines accommodates 

both linear and non-linear trends in abundance with respect to time. 

  

Visualizing the differential hyperspheres 

For each hypersphere detected at a spatial FDR of 5%, we defined the 

median-based position as a set of intensity values across all markers. These values 

were used to perform t-SNE via the Rtsne package (https://cran.r-

project.org/web/packages/Rtsne), using a perplexity value of 10. To colour the plot 

based on differential abundance, a GLM was fitted to the counts for each 

hypersphere using a design matrix with time as a covariate. This yields a log2-fold 

change in abundance per day for each hypersphere, corresponding to a blue-to-red 

gradient for negative-to-positive values respectively. (We assume a linear change in 

abundance over time for simplicity. This does not affect the significance statistics, 

which are computed with a spline to account for non-linear trends.) To colour the plot 

based on marker intensity, the 1st and 99th percentiles of the intensities for all cells 

were computed for each marker. A linear gradient between these two percentiles 

was constructed using the viridis colour scheme (https://cran.r-

project.org/web/packages/viridis). Each hypersphere was then assigned a colour 

based on the location of its median marker intensity on the gradient.  

 

Using CITRUS to analyze the MEF data 

To run CITRUS (v0.08), the citrus.full command was used with the 

featureType argument set to “abundances” and the modelType argument set to 

“sam”. The family argument was set to “continuous” to identify changes in 

abundance over time. Downsampling was performed to 1000 cells per sample and 

the minimum cluster size was set to 5%, based on the default settings. Detected 

clusters were defined as those reported at a FDR of 5%, as reported by the SAM 

method. For each detected cluster, the median-based centre was determined and 
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the hypersphere with the closest position to the cluster centre in M-dimensional 

space was identified. Each cluster centre was mapped onto the t-SNE plot of DA 

hyperspheres using the coordinates of its closest hypersphere. Note that a cluster 

centre was not mapped if the distance to the closest hypersphere was greater than 

0.5√M. If an unmapped DA cluster was present, it was treated as being undetected 

by the hypersphere-based approach.  

 

Implementation of cell counting software 

All simulation and analysis code were written in R. Methods in the cydar 

package were written in a combination of R and C++. Cell counting, nearest-

neighbour detection and density estimation were performed using an approach 

similar to that in X-shift8. Briefly, k-means clustering was performed on all cells, 

setting k = √N where N  is the total number of cells. Let |j – t| denote the Euclidean 

distance between cell j and the centre of cluster t in the M-dimensional marker 

space. Similarly, let |h − t| denote the distance between the centres of t and 

hypersphere h. Both of these distances only need to be computed once per cell – in 

the latter case, this is because each hypersphere is centred on a cell. By applying 

the triangle inequality, a cell j in cluster t was only considered for assignment to a 

hypersphere h if r + |j − t| ≥ |h − t|. For cells not satisfying this requirement, the 

distance between j and h was not computed to avoid unnecessary work. Similarly, j 

was only considered as a possible neighbour of a cell j' if dn + |j − t| ≥ |j' - t| where dn 
is the distance to the current nth nearest neighbour (where the value of dn is 

continually updated once a closer nth nearest neighbour is identified). This speeds up 

the pipeline while yielding the same results as a naïve approach that computes 

distances between every pair of cells. On a desktop machine, the analysis takes 10-

20 minutes to run for each of the MEF reprogramming time courses.  

 

Code availability  

Simulation and analysis code are accessible at 

http://github.com/MarioniLab/DAMethods2016. Methods in the DA analysis pipeline 

are publicly available in the cydar package (mass CYtometry for Differential 

Abundance analyses in R) from the open-source Bioconductor project at 

http://bioconductor.org/packages/cydar, or by downloading the Supplementary 

Software associated with this paper.  
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Data availability  

All data sets used here are publicly available from Cytobank 

(https://community.cytobank.org), using the accession number 43324 for the MEF 

study and 44185 for the BMMC study.  

 

 

Supplementary Materials  

The Supplementary Materials is a single PDF file that consists of Sections 1-9 and 

contains Supplementary Figures 1-24 and Supplementary Table 1.  
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