62 research outputs found

    Leveraging Social Media and Scholarly Discussion for Educator Empowerment

    Full text link
    This paper shares insights from an international community of educators who have been using social media as a virtual space for a scholarly reading group: #edureading. The collection of educator narratives presented in this paper show how social networks on Twitter and Flipgrid were used as inclusive environments for teacher-led professional development. This paper is both a report of research involving five practitioners inquiring into their collective experience, and an exercise in building the scholarly capacity of the #edureading group. The accessibility of the social media platforms, as well as the collaborative, inquiry-based approach to scholarly reading, emerge as key themes in the educator narratives. The findings of this research emphasise that professional learning occurring in virtual spaces is open to social mediation using the norms of social networks, rather than the norms of workplaces, jurisdictions or education sectors, and that this can lead to a greater sense of empowerment for educators</jats:p

    Phytoplankton composition from sPACE: Requirements, opportunities, and challenges

    Get PDF
    Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years through near surface measurements of the concentration of chlorophyll a. While remote sensing of ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic and freshwater ecosystems, it is important to consider both total phytoplankton biomass and changes in phytoplankton community composition in order to fully understand the dynamics of the aquatic ecosystems. With the upcoming launch of NASA\u27s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we analyze the needs of the user community, review existing approaches for detecting phytoplankton community composition in situ and from space, and highlight the benefits that the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and gaps to be addressed by the community going forward, while offering a vision of what global phytoplankton community composition will look like through the “eyes” of PACE

    Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests

    Get PDF
    Integrated long-term, in-situ observations are needed to document ongoing environmental change, to “ground-truth” remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Effect of Particle Size and Support Type on Pd Catalysts for 1,3-Butadiene Hydrogenation

    Get PDF
    Pd nanoparticles supported on SiO 2 , Si 3 N 4 and Al 2 O 3 were studied to examine the effect of particle size and support type on the hydrogenation of 1,3-butadiene. Pd nanoparticles were produced using a reverse micelle method resulting in particles with a remarkably small particle size distribution (σ < < 1 nm). The support type and particle size were observed to affect both catalytic activity and product selectivity. All catalysts showed a decrease of their activity with time on stream, paired with an increase in selectivity to butenes (1-butene and cis/trans-2-butene) from a product stream initially dominated by n-butane. In situ XAFS demonstrated a correlation between the formation of palladium hydride and n-butane production in the early stages (~ 1 h) of reaction. The extent of palladium hydride formation, as well as its depletion with time on stream, was dependent on both particle size and support type. Metallic Pd was identified as the species selective towards the production of butenes

    The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview

    Get PDF
    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is an interdisciplinary investigation to improve understanding of Earth's ocean ecosystem-aerosol-cloud system. Specific overarching science objectives for NAAMES are to (1) characterize plankton ecosystem properties during primary phases of the annual cycle and their dependence on environmental forcings, (2) determine how these phases interact to recreate each year the conditions for an annual plankton bloom, and (3) resolve how remote marine aerosols and boundary layer clouds are influenced by plankton ecosystems. Four NAAMES field campaigns were conducted in the western subarctic Atlantic between November 2015 and April 2018, with each campaign targeting specific seasonal events in the annual plankton cycle. A broad diversity of measurements were collected during each campaign, including ship, aircraft, autonomous float and drifter, and satellite observations. Here, we present an overview of NAAMES science motives, experimental design, and measurements. We then briefly describe conditions and accomplishments during each of the four field campaigns and provide information on how to access NAAMES data. The intent of this manuscript is to familiarize the broad scientific community with NAAMES and to provide a common reference overview of the project for upcoming publications

    The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview

    Get PDF
    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is an interdisciplinary investigation to improve understanding of Earth's ocean ecosystem-aerosol-cloud system. Specific overarching science objectives for NAAMES are to (1) characterize plankton ecosystem properties during primary phases of the annual cycle and their dependence on environmental forcings, (2) determine how these phases interact to recreate each year the conditions for an annual plankton bloom, and (3) resolve how remote marine aerosols and boundary layer clouds are influenced by plankton ecosystems. Four NAAMES field campaigns were conducted in the western subarctic Atlantic between November 2015 and April 2018, with each campaign targeting specific seasonal events in the annual plankton cycle. A broad diversity of measurements were collected during each campaign, including ship, aircraft, autonomous float and drifter, and satellite observations. Here, we present an overview of NAAMES science motives, experimental design, and measurements. We then briefly describe conditions and accomplishments during each of the four field campaigns and provide information on how to access NAAMES data. The intent of this manuscript is to familiarize the broad scientific community with NAAMES and to provide a common reference overview of the project for upcoming publications

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF
    corecore