79 research outputs found
Development of Keap1-interactive small molecules that regulate Nrf2 transcriptional activity
There has been considerable progress recently in the discovery and development of Keap1-interactive compounds that enhance Nrf2 transcriptional activity. The compounds fall into two broad classes: electrophilic cysteine-reactive compounds and non-electrophilic Keap1-Nrf2 protein–protein interaction inhibitors. This short review highlights structures from both classes and discusses their development, biological properties, and the future prospects for developing therapeutic agents. Molecules of both types have potential applications in areas including inflammatory conditions, chronic neurodegenerative diseases and possibly cancer chemoprevention
Independent Expert Scientific Panel – Report on Unconventional Oil and Gas
No abstract available
TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control
The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1
A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity
Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy
Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control
The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis
A blind accuracy assessment of computer-modeled forensic facial reconstruction using computed tomography data from live subjects.
A computer modeling system for facial reconstruction has been developed that employs a touch-based application to create anatomically accurate facial models focusing on skeletal detail. This article discusses the advantages and disadvantages of the system and illustrates its accuracy and reliability with a blind study using computed tomography (CT) data of living individuals. Three-dimensional models of the skulls of two white North American adults (one male, one female) were imported into the computer system. Facial reconstructions were produced by two practitioners following the Manchester method. Two posters were produced, each including a face pool of five surface model images and the facial reconstruction. The face pool related to the sex, age, and ethnic group of the target individual and included the surface model image of the target individual. Fifty-two volunteers were asked to choose the face from the face pool that most resembled each reconstruction. Both reconstructions received majority percentage hit rates that were at least 50% greater than any other face in the pool. The combined percentage hit rate was 50% above chance (70%). A quantitative comparison of the facial morphology between the facial reconstructions and the CT scan models of the subjects was carried out using Rapidform(™) 2004 PP2-RF4. The majority of the surfaces of the facial reconstructions showed less than 2.5 mm error and 90% of the male face and 75% of the female face showed less than 5 mm error. Many of the differences between the facial reconstructions and the facial scans were probably the result of positional effects caused during the CT scanning procedure, especially on the female subject who had a fatter face than the male subject. The areas of most facial reconstruction error were at the ears and nasal tip
Additions to the Catalogue of the Marine Shells of Victoria
Volume: 20Start Page: 31End Page: 3
- …