88 research outputs found
The Victorian anti-vaccination discourse corpus (VicVaDis): construction and exploration
This article introduces and explores the 3.5-million-word Victorian Anti-Vaccination Discourse Corpus (VicVaDis). The corpus is intended to provide a (freely accessible) historical resource for the investigation of the earliest public concerns and arguments against vaccination in England, which revolved around compulsory vaccination against smallpox in the second half of the 19th century. It consists of 133 anti-vaccination pamphlets and publications gathered from 1854 to 1906, a span of 53 years that loosely coincides with the Victorian era (1837–1901). This timeframe was chosen to capture the period between the 1853 Vaccination Act, which made smallpox vaccination for babies compulsory, and the 1907 Act that effectively ended the mandatory nature of vaccination. After an overview of the historical background, this article describes the rationale, design and construction of the corpus, and then demonstrates how it can be exploited to investigate the main arguments against compulsory vaccination by means of widely accessible corpus linguistic tools. Where appropriate, parallels are drawn between Victorian and 21st-century vaccine-hesitant attitudes and arguments. Overall, this article demonstrates the potential of corpus analysis to add to our understanding of historical concerns about vaccination
Genome Sequence of Human Papillomavirus 23 Strain HPV-23/Lancaster/2015
The genome of human papillomavirus type 23 (HPV-23; family Papillomaviridae, genus Betapapillomavirus, species Betapapillomavirus 2, type 23) was assembled by deep sequencing from nasopharyngeal swabs. The assembled genome
is 2.7% divergent over its full length from the single complete genome of HPV-23 in GenBank (accession no. U31781). We named the strain HPV-23/Lancaster/201
Genome Sequence of Human Rhinovirus A22, Strain Lancaster/2015
The genome of human rhinovirus A22 (HRV-A22) was assembled by deep sequencing RNA samples from nasopharyngeal swabs. The assembled genome is 8.7% divergent from the HRV-A22 reference strain over its full length, and it is only the second full-length genome sequence for HRV-A22. The new strain is designated strain HRV-A22/Lancaster/2015
Genome sequence of human papillomavirus type 20, strain HPV-20/Lancaster/2015
The genome sequence of human papillomavirus type 20 (HPV-20; family Papillomaviridae, genus Betapapillomavirus, species Betapapillomavirus 1, type 20) was assembled by deep sequencing from nasopharyngeal swabs. The assembled genome is 0.37% divergent over its full length from the single complete genome of HPV-20 in GenBank (U31778). We named the strain HPV-20/Lancaster/2015
Nasopharyngeal metagenomic deep sequencing data, Lancaster, UK, 2014-2015
Nasopharyngeal swabs were taken from volunteers attending a general medical practice and a general hospital in Lancaster, UK, and at Lancaster University, in the winter of 2014–2015. 51 swabs were selected based on high RNA yield and allocated to deep sequencing pools as follows: patients with chronic obstructive pulmonary disease; asthmatics; adults with no respiratory symptoms; adults with feverish respiratory symptoms; adults with respiratory symptoms and presence of antibodies against influenza C; paediatric patients with respiratory symptoms (2 pools); adults with influenza C infection (2 pools), giving a total of 9 pools. Illumina sequencing was performed, with data yields per pool in the range of 345.6 megabases to 14 gigabases after removal of reads aligning to the human genome. The data were deposited in the Sequence Read Archive at NCBI, and constitute a resource for study of the viral, bacterial and fungal metagenome of the human nasopharynx in healthy and diseased states and comparison with other metagenomic studies on the human respiratory tract
Age-related differences in the neck strength of adolescent rugby players: A cross-sectional cohort study of Scottish schoolchildren
ObjectivesTo evaluate the neck strength of school-aged rugby players, and to define the relationship with proxy physical measures with a view to predicting neck strength.MethodsCross-sectional cohort study involving 382 rugby playing schoolchildren at three Scottish schools (all male, aged between 12 and 18 years). Outcome measures included maximal isometric neck extension, weight, height, grip strength, cervical range of movement and neck circumference.ResultsMean neck extension strength increased with age (p = 0.001), although a wide inter-age range variation was evident, with the result that some of the oldest children presented with the same neck strength as the mean of the youngest group. Grip strength explained the most variation in neck strength (R2 = 0.53), while cervical range of movement and neck girth demonstrated no relationship. Multivariable analysis demonstrated the independent effects of age, weight and grip strength, and the resultant model explained 62.1% of the variance in neck strength. This model predicted actual neck strength well for the majority of players, although there was a tendency towards overestimation at the lowest range and underestimation at the highest.ConclusionA wide variation was evident in neck strength across the range of the schoolchild-playing population, with a surprisingly large number of senior players demonstrating the same mean strength as the 12-year-old mean value. This may suggest that current training regimes address limb strength but not neck strength, which may be significant for future neck injury prevention strategies. Age, weight and grip strength can predict around two thirds of the variation in neck strength, however specific assessment is required if precise data is sought
Comparative cervical profiles of adult and under-18 front-row rugby players: implications for playing policy
Objective To compare the cervical isometric strength, fatigue endurance and range of motion of adult and under-18 age-grade front-row rugby players to inform the development of a safe age group policy with particular reference to scrummaging.Design Cross-sectional cohort study.Setting ‘Field testing’ at Murrayfield stadium.Participants 30 high-performance under-18 players and 22 adult front-row rugby players.Outcome measures Isometric neck strength, height, weight and grip strength.Results Youth players demonstrated the same height and grip strength as the adult players; however, the adults were significantly heavier and demonstrated substantially greater isometric strength (p<0.001). Only two of the ‘elite’ younger players could match the adult mean cervical isometric strength value. In contrast to school age players in general, grip strength was poorly associated with neck strength (r=0.2) in front-row players; instead, player weight (r=0.4) and the number of years’ experience of playing in the front row (r=0.5) were the only relevant factors in multivariate modelling of cervical strength (R2=0.3).Conclusions Extreme forces are generated between opposing front rows in the scrum and avoidance of mismatch is important if the risk of injury is to be minimised. Although elite youth front-row rugby players demonstrate the same peripheral strength as their adult counterparts on grip testing, the adults demonstrate significantly greater cervical strength. If older youths and adults are to play together, such findings have to be noted in the development of age group policies with particular reference to the scrum
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
Thoracic CT findings of novel influenza A (H1N1) infection in immunocompromised patients
The goal of this study is to describe the spectrum of initial and follow-up CT findings of novel influenza A (H1N1) infection in a series of immunocompromised patients. Eight immunocompromised patients with documented novel influenza A (H1N1) had CT imaging at our institution between May 2009 and August 2009. A total of 20 CTs (initial and follow-up) were reviewed for the presence, severity, and distribution of the following: ground glass opacity, consolidation, interlobular septal thickening, mosaic perfusion, airway wall thickening, airway dilatation, nodules, cysts, pleural effusion, pericardial effusion, lymphadenopathy, and air trapping. The most common findings were airway thickening/dilatation, peribronchial ground glass opacity, centrilobular nodules, and tree-in-bud opacities. Peripheral consolidation involving the lower lobes was also a common pattern. Findings frequently involved all lobes and were closely associated with either large or small airways. Two patients presented with atypical CT findings including focal lobar consolidation and patchy lower lobe consolidation with soft tissue centrilobular nodules. Most survivors showed near complete resolution of findings within 35 days. CT scans in immunocompromised patients with novel influenza H1N1 commonly show a strong airway predominance of findings or peripheral areas of consolidation involving the lower lobes. A subset of patients with novel influenza A (H1N1) will show findings not typical of viral infection
Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens
We have assessed two approaches to sequencing complete human cytomegalovirus (HCMV) genomes (236 kbp) in DNA extracted from infected cell cultures (strains 3157, HAN13, HAN20 and HAN38) or clinical specimens (strains JP and 3301). The first approach involved amplifying genomes from the DNA samples as overlapping PCR products, sequencing these by the Sanger method, acquiring reads from a capillary instrument and assembling these using the Staden programs. The second approach involved generating sequence data from the DNA samples by using an Illumina Genome Analyzer (IGA), processing the filtered reads by reference-independent (de novo) assembly, utilizing the resulting sequence to direct reference-dependent assembly of the same data and finishing by limited PCR sequencing. Both approaches were successful. In particular, the investigation demonstrated the utility of IGA data for efficiently sequencing genomes from clinical samples containing as little as 3 % HCMV DNA. Analysis of the genome sequences obtained showed that each of the strains grown in cell culture was a mutant. Certain of the mutations were shared among strains from independent clinical sources, thus suggesting that they may have arisen in a common ancestor during natural infection. Moreover, one of the strains (JP) sequenced directly from a clinical specimen was mutated in two genes, one of which encodes a proposed immune-evasion function, viral interleukin-10. These observations imply that HCMV mutants exist in human infections
- …