2,051 research outputs found
Charting the TeV Milky Way: H.E.S.S. Galactic plane survey maps, catalog and source populations
Very-high-energy (VHE, E>100 GeV) gamma-rays provide a unique view of the
non-thermal universe, tracing the most violent and energetic phenomena at work
inside our Galaxy and beyond. The latest results of the H.E.S.S. Galactic Plane
Survey (HGPS) undertaken by the High Energy Stereoscopic System (H.E.S.S.), an
array of four imaging atmospheric Cherenkov telescopes located in Namibia, are
described here. The HGPS aims at the detection of cosmic accelerators with
environments suitable for the production of photons at the highest energies and
has led to the discovery of an unexpectedly large and diverse population of
over 60 sources of TeV gamma rays within its current range of l = 250 to 65
degrees in longitude and |b|<3.5 degrees in latitude. The data set of the HGPS
comprises 2800 hours of high-quality data, taken in the years 2004 to 2013. The
sensitivity for the detection of point-like sources, assuming a power-law
spectrum with a spectral index of 2.3 at a statistical significance of 5 sigma,
is now at the level of 2% Crab or better in the core HGPS region. The latest
maps of the inner Galaxy at TeV energies are shown alongside an introduction to
the first H.E.S.S. Galactic Plane Survey catalog. Finally, in addition to an
overview of the H.E.S.S. Galactic source population a few remarkable, recently
discovered sources will be highlighted.Comment: 8 pages, 6 figures, in Proceedings of the 48th Rencontres de Moriond
(2013), La Thuile (Italy
"Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite
The present communication reports the first direct measurement of the
conformation of a polymer corona grafted around silica nano-particles dispersed
inside a nanocomposite, a matrix of the same polymer. This measurement
constitutes an experimental breakthrough based on a refined combination of
chemical synthesis, which permits to match the contribution of the neutron
silica signal inside the composite, and the use of complementary scattering
methods SANS and SAXS to extract the grafted polymer layer form factor from the
inter-particles silica structure factor. The modelization of the signal of the
grafted polymer on nanoparticles inside the matrix and the direct comparison
with the form factor of the same particles in solution show a clear-cut change
of the polymer conformation from bulk to the nanocomposite: a transition from a
stretched and swollen form in solution to a Gaussian conformation in the matrix
followed with a compression of a factor two of the grafted corona. In the
probed range, increasing the interactions between the grafted particles (by
increasing the particle volume fraction) or between the grafted and the free
matrix chains (decreasing the grafted-free chain length ratio) does not
influence the amplitude of the grafted brush compression. This is the first
direct observation of the wet-to-dry conformational transition theoretically
expected to minimize the free energy of swelling of grafted chains in
interaction with free matrix chains, illustrating the competition between the
mixing entropy of grafted and free chains, and the elastic deformation of the
grafted chains. In addition to the experimental validation of the theoretical
prediction, this result constitutes a new insight for the nderstanding of the
general problem of dispersion of nanoparticles inside a polymer matrix for the
design of new nanocomposites materials
A Scintillating Fiber Tracker With SiPM Readout
We present a prototype for the first tracking detector consisting of 250
micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The
detector has a modular design, each module consists of a mechanical support
structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins.
Five layers of scintillating fibers are glued to both top and bottom of the
support structure. SiPM arrays with a channel pitch of 250 micron are placed in
front of the fibers. We show the results of the first module prototype using
multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out
by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as
32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron
+/- 6 micron at an average yield of 10 detected photons per minimal ionizig
particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical
Seminar on Innovative Particle and Radiation Detectors (IPRD08
The role of the elementary school counselor in dealing with latchkey children
Children\u27s care of themselves in the absence of adult supervision has existed since the industrial revolution and is an important part of current reality. To ensure that 1 keys to houses are not lost, many children, responsible for letting themselves into their homes after school, are required by their parents to wear keys on a chain around their necks. This explains where the term latchkey originated and why these kids are called this today. The latchkey problem is not new; it was a concern more than 80 years ago. Stroman and Duff (1982) reported that the theme of the 1943 American Association of School Administrators annual meeting expressed concern for the doorkey child. This problem resulted during the wartime years when many mothers worked in defense plants and fathers were absent in military service. As early as 1894, charities and day nurseries provided care for school-aged children (Seligson, Genser, Gannell, & Gray, 1983)
Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter
The critical behavior of a model colloid-polymer mixture, the so-called AO
model, is studied using computer simulations and finite size scaling
techniques. Investigated are the interfacial tension, the order parameter, the
susceptibility and the coexistence diameter. Our results clearly show that the
interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26.
This is in good agreement with the 3D Ising exponent. Also calculated are
critical amplitude ratios, which are shown to be compatible with the
corresponding 3D Ising values. We additionally identify a number of subtleties
that are encountered when finite size scaling is applied to the AO model. In
particular, we find that the finite size extrapolation of the interfacial
tension is most consistent when logarithmic size dependences are ignored. This
finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497
(1993)]Comment: 13 pages, 16 figure
Gel transitions in colloidal suspensions
The idealized mode coupling theory (MCT) is applied to colloidal systems
interacting via short-range attractive interactions of Yukawa form. At low
temperatures MCT predicts a slowing down of the local dynamics and ergodicity
breaking transitions. The nonergodicity transitions share many features with
the colloidal gel transition, and are proposed to be the source of gelation in
colloidal systems. Previous calculations of the phase diagram are complemented
with additional data for shorter ranges of the attractive interaction, showing
that the path of the nonergodicity transition line is then unimpeded by the
gas-liquid critical curve at low temperatures. Particular attention is given to
the critical nonergodicity parameters, motivated by recent experimental
measurements. An asymptotic model is developed, valid for dilute systems of
spheres interacting via strong short-range attractions, and is shown to capture
all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J.
Phys.: Condens. Matte
- …