495 research outputs found

    Lambda-N scattering length from the reaction gamma d -> K^+ Lambda n

    Full text link
    The perspects of utilizing the strangeness-production reaction gamma d -> K^+ Lambda n for the determination of the Lambda n low-energy scattering parameters are investigated. The spin observables that need to be measured in order to isolate the Lambda n singlet (1S0) and triplet (3S1) states are identified. Possible kinematical regions where the extraction of the Lambda n scattering lengths might be feasible are discussed.Comment: 8 pages, 4 figure

    Weak localization of holes in high-mobility heterostructures

    Full text link
    Theory of weak localization is developed for two-dimensional holes in semiconductor heterostructures. Ballistic regime of weak localization where the backscattering occurs from few impurities is studied with account for anisotropic momentum scattering of holes. The transition from weak localization to anti-localization is demonstrated for long dephasing times. For stronger dephasing the conductivity correction is negative at all hole densities due to non-monotonous dependence of the spin relaxation time on the hole wavevector. The anomalous temperature dependent correction to the conductivity is calculated. We show that the temperature dependence of the conductivity is non-monotonous at moderate hole densities.Comment: 5 pages, 4 figure

    High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)

    Full text link
    The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. The large final state enhancement near the Lambda p threshold can be described using the standard Jost-function approach. The singlet and triplet scattering lengths and effective ranges are deduced by fitting simultaneously the Lambda p invariant mass spectrum and the total cross section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure

    Gate-Controlled Spin-Orbit Quantum Interference Effects in Lateral Transport

    Full text link
    In situ control of spin-orbit coupling in coherent transport using a clean GaAs/AlGaAs 2DEG is realized, leading to a gate-tunable crossover from weak localization to antilocalization. The necessary theory of 2D magnetotransport in the presence of spin-orbit coupling beyond the diffusive approximation is developed and used to analyze experimental data. With this theory the Rashba contribution and linear and cubic Dresselhaus contributions to spin-orbit coupling are separately estimated, allowing the angular dependence of spin-orbit precession to be extracted at various gate voltages.Comment: related papers at http://marcuslab.harvard.ed

    Power counting and renormalization group invariance in the subtracted kernel method for the two-nucleon system

    Full text link
    We apply the subtracted kernel method (SKM), a renormalization approach based on recursive multiple subtractions performed in the kernel of the scattering equation, to the chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading-order (NNLO). We evaluate the phase-shifts in the 1S0 channel at each order in Weinberg's power counting scheme and in a modified power counting scheme which yields a systematic power-law improvement. We also explicitly demonstrate that the SKM procedure is renormalization group invariant under the change of the subtraction scale through a non-relativistic Callan-Symanzik flow equation for the evolution of the renormalized NN interactions.Comment: Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Fermi-liquid behaviour of the low-density 2D hole gas in GaAs/AlGaAs heterostructure at large values of r_s

    Full text link
    We examine the validity of the Fermi-liquid description of the dilute 2D hole gas in the crossover from 'metallic'-to-'insulating' behaviour of R(T).It has been established that, at r_s as large as 29, negative magnetoresistance does exist and is well described by weak localisation. The dephasing time extracted from the magnetoresistance is dominated by the T^2 -term due to Landau scattering in the clean limit. The effect of hole-hole interactions, however, is suppressed when compared with the theory for small r_s.Comment: 4 pages ReVTeX, 4 ps figure

    The Quantum Theory of MIMO Markovian Feedback with Diffusive Measurements

    Full text link
    Feedback control engineers have been interested in MIMO (multiple-input multiple-output) extensions of SISO (single-input single-output) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. {\bf 70}, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and \emph{arbitrary} diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.Comment: 17 pages, 2 figure
    • …
    corecore