456 research outputs found

    Characterisation of Float Rocks at Ireson Hill, Gale Crater

    Get PDF
    Float rocks discovered by surface missions on Mars have given unique insights into the sedimentary, diagenetic and igneous processes that have operated throughout the planets history. In addition, Gale sedimentary rocks, both float and in situ, record a combination of source compositions and diagenetic overprints. We examine a group of float rocks that were identified by the Mars Science Laboratory missions Curiosity rover at the Ireson Hill site, circa. sol 1600 using ChemCam LIBS, APXS and images from the MastCam, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro-Imager (RMI) cameras. Geochemical data provided by the APXS and ChemCam instruments allow us to compare the compositions of these rocks to known rock types from Gale crater, as well as elsewhere on Mars. Ireson Hill is a 15 m long butte in the Murray formation with a dark cap-ping unit with chemical and stratigraphic consistency with the Stimson formation. A total of 6 float rocks have been studied on the butte

    First Gale Western Butte Capping-Unit Compositions, and Relationships to Earlier Units Along Curiosity's Traverse

    Get PDF
    The Curiosity rover has been traversing through the clay-bearing unit (Glen Torridon; GT), approaching Greenheugh pediment, a large, fan-shaped surface surrounding the mouth of Gediz Vallis on the lower slope of Mt. Sharp. The pediment unconformably overlies the underlying bedrock, and is hence younger than units of the Mt. Sharp group. Orbital imaging of the pediment has shown it to have a slightly lower albedo and higher thermal inertia than neighboring units, to be relatively retentive of craters (e.g., erosion resistant), and to exhibit curved bedforms suggestive of lithified eolian bedforms. No diagnostic spectral signature has been observed from orbit. Recent rover positions allowed remote imaging of the contact between Greenheugh pediment and the eroded Murray formation strata below it, showing that the pediment capping material is cross-bedded and relatively thin (1-3 m), and suggesting that the pediment may have been much larger at one time. As Curiosity approached the edge of the pediment, the team investigated two buttes named Central and Western. The latter butte contains dark capping material that initially looked similar to the pediment cap, but close inspection revealed important physical differences. Here we report on compositions from ChemCam of two float rocks that appear to have rolled down from the capping unit, and on potential relation-ships to other targets along the traverse of the rover

    Geochemical variation in the Stimson formation of Gale crater: Provenance, mineral sorting, and a comparison with modern Martian dunes

    Get PDF
    The Mars Science Laboratory Curiosity rover has encountered both ancient lithified and modern active aeolian dune deposits within Gale crater, providing an opportunity to study how aeolian processes have changed during Gale crater's geological history. This study uses data from the Chemistry and Camera (ChemCam) and Chemistry and Mineralogy (CheMin) instrument suites onboard Curiosity to; (1) constrain the diagenetic processes that lithified and altered the ancient aeolian Stimson formation, (2) investigate whether the geochemical signature in the Stimson formation is consistent with the aeolian mafic-felsic mineral sorting trend identified in the modern Bagnold dune fields in Gale crater, and (3) discuss the provenance of the Stimson sediments, comparing it to those identified in the modern dune and ancient river and lake deposits also analyzed along Curiosity's traverse. The ancient Stimson dune deposits that stratigraphically overlie the Gale fluvio-lacustrine units were analyzed in two locations; the Emerson and the Naukluft plateaus. ChemCam data show that the Stimson formation has subtle variations in MgO, Al2O3, Na2O, and K2O between the two localities. An agglomerative cluster analysis of the constrained Stimson dataset reveals five clusters, four of which relate to different proportions of mafic and felsic minerals analyzed by ChemCam. In general, the cluster analysis shows that the Emerson plateau has a greater proportion of mafic minerals and fewer coarse, felsic grains relative to the Naukluft plateau. This variation in mafic and felsic minerals between localities suggests a southwest to northeast net sediment transport direction due to aeolian mineral sorting dynamics preferentially transporting mafic minerals that are easier to saltate than the elongate, often coarser, felsic minerals. This derived transport direction for the Stimson formation supports that determined by sedimentological evidence and is opposite to that previously determined for the active Bagnold dunes inferring a change in the wind regime with time. An opposite sediment transport direction between the ancient and modern dunes in Gale crater further supports geochemical and mineralogical evidence that suggests different basaltic source regions. Compositionally, the bulk Stimson formation is most similar to the subalkaline basalt source region that is inferred to be the dominant sediment source of the fluvio-lacustrine Bradbury group. This is likely the result of the Stimson formation and basaltic Bradbury group sediments sharing a similar local basaltic source region such as the rim and walls of Gale crater

    Apatites in Gale Crater

    Get PDF
    ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space

    The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument

    Get PDF
    The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign

    Improved Survival of HIV-1-Infected Patients with Progressive Multifocal Leukoencephalopathy Receiving Early 5-Drug Combination Antiretroviral Therapy

    Get PDF
    Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery.All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008).The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death.ClinicalTrials.gov NCT00120367

    Characteristics of pebble- and cobble-sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest

    Get PDF
    We have assessed the characteristics of clasts along Curiosity's traverse to shed light on the processes important in the genesis, modification, and transportation of surface materials. Pebble- to cobble-sized clasts at Bradbury Landing, and subsequentl

    The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity

    Get PDF
    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater
    • …
    corecore