Abstract

ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space

    Similar works