117 research outputs found
Liquid and vapour phase of lavandin (Lavandula Ă intermedia) essential oil: chemical composition and antimicrobial activity
Essential oils from Lavandula genus and the obtained hybrids are widely used for different purposes such as perfume production in the cosmetic field and for its biological properties. This is the first study on the liquid and vapour phase of Lavandula Ă intermedia âGrossoâ essential oil grown in the Lazio Region, Italy, investigated using headspace coupled to gas chromatography and mass spectrometry (HS-GC/MS). The results showed the most abundant components were linalool and linalyl acetate, followed by 1,8-cineole and terpinen-4-ol, while lavandulyl acetate and borneol were identified as minor compounds, maintaining the same proportion in both the liquid and vapour phase. Furthermore, we tested lavandin liquid and vapour phase essential oil on gram-negative bacteria (Escherichia coli, Acinetobacter bohemicus, and Pseudomonas fluorescens) and gram-positive bacteria (Bacillus cereus and Kocuria marina)
Chemical investigation of a biologically active schinus molle L. leaf extract
The pepper tree Schinus molle L. is an evergreen ornamental plant belonging to the Anacardiaceae family, native to South America and widespread throughout the world. It has biological activities and is used in folk medicine. This paper aims to contribute to a deeper knowledge of its chemical composition and biological properties. S. molle leaf extracts were obtained by sequential extraction with solvents of different polarities and subsequently tested on the HL-60 human leukaemia cell line to define a possible cytotoxic activity. Among the investigated extracts, the petroleum ether extract revealed a high cytotoxic activity, and its chemical composition was further investigated. By a silica column chromatography, eight fractions were obtained, and their compositions were determined by GC-MS analysis. Compounds and relative abundance differed widely among the fractions; sesquiterpenes resulted the main component and alcoholic sesquiterpenes the most abundant
Effects of processing on polyphenolic and volatile composition and fruit quality of clery strawberries
Strawberries belonging to cultivar Clery (Fragaria x ananassa (Duchesne ex Weston)), cultivated in central Italy were subjected to a multiâmethodological experimental study. Fresh and defrosted strawberries were exposed to different processing methods, such as homogenization, thermal and microwave treatments. The homogenate samples were submitted to CIEL*a*b* color analysis and HeadâSpace GC/MS analysis to determine the impact of these procedures on phytochemical composition. Furthermore, the corresponding strawberry hydroalcoholic extracts were further analyzed by HPLCâDAD for secondary metabolites quantification and by means of spectrophotometric in vitro assays to evaluate their total phenolic and total flavonoid contents and antioxidant activity. These chemical investigations confirmed the richness in bioactive metabolites supporting the extraordinary healthy potential of this fruit as a food ingredient, as well as functional food, highlighting the strong influence of the processing steps which could negatively impact on the polyphenol composition. Despite a more brilliant red color and aroma preservation, nonpasteurized samples were characterized by a lower content of polyphenols and antioxidant activity with respect to pasteurized samples, as also suggested by the PCA analysis of the collected data
Antiproliferative properties of papaver rhoeas ovule extracts and derived fractions tested on HL60 leukemia human cells
Papaver rhoeas plant is common in many regions worldwide and contributes to the landscape with its red flower. In the present study we first carried out morphological investigation by optical and scanning electron microscopy of the ovules within the ovary. After ovulesâ isolation we prepared extracts to test possible cytotoxic activities on HL60 leukemia human cells and investigated the extracts using thin-layer chromatography (TLC) and gas-chromatography/mass spectrometry (GC-MS). P. rhoeas ovules showed an elongated, round shape and the presence of ordered sculptures on the ovule surface. The ovule extracts showed cytotoxic activity on HL60 human cells mainly found in some TLC-isolated spots. Compounds consisting of active spots were identified by GC-MS investigations. Our findings on the P. rhoeas ovule compounds open perspectives for further investigations of TLC-isolated spots on other human cancer cell lines
Apoptotic effects on HL60 human leukaemia cells induced by lavandin essential oil treatment
Recent scientific investigations have reported a number of essential oils to interfere with intracellular signalling pathways and to induce apoptosis in different cancer cell types. In this paper, Lavandin Essential Oil (LEO), a natural sterile hybrid obtained by cross-breeding L. angustifolia Ă L. latifolia, was tested on human leukaemia cells (HL60). Based on the MTT results, the reduced cell viability of HL60 cells was further investigated to determine whether cell death was related to the apoptotic process. HL60 cells treated for 24 h with LEO were processed by flow cytometry, and the presence of Annexin V was measured. The activation of caspases-3 was evaluated by western blot and immunofluorescence techniques. Treated cells were also examined by scanning and transmission electron microscopy to establish the possible occurrence of morphological alterations during the apoptotic process. LEO main compounds, such as linalool, linalyl acetate, 1,8-cineole, and terpinen-4-ol, were also investigated by MTT and flow cytometry analysis. The set of obtained results showed that LEO treatments induced apoptosis in a dose-dependent, but not time-dependent, manner on HL60 cells, while among LEO main compounds, both terpinen-4-ol and linalyl acetate were able to induce apoptosis
The present and future system for measuring the Atlantic meridional overturning circulation and heat transport
of the global combined atmosphere-ocean heat flux and
so is important for the mean climate of the Atlantic
sector of the Northern Hemisphere. This meridional heat
flux is accomplished by both the Atlantic Meridional
Overturning Circulation (AMOC) and by basin-wide
horizontal gyre circulations. In the North Atlantic
subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are
also important. Climate models suggest the AMOC will
slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring
array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will
continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number
of latitudes, to establish the dynamics and variability at
each latitude and then their meridional connectivity.
Modeling studies indicate that adaptations of the 26.5°N
type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models
Brazil Current volume transport variability during 2009-2015 from a longterm moored array at 34.5°S
The Brazil Current, the western limb of the subtropical gyre of the South Atlantic Ocean, is one of the major Western Boundary Currents of the global ocean. Here, we present the first multiyear continuous daily time series of Brazil Current absolute volume transport obtained using 6+ years of observations from a line of four pressure-recording inverted echo sounders (PIES) deployed at 34.5°S. The array was augmented in December 2012 with two current meter-equipped PIES and in December 2013 with a moored Acoustic Doppler Current Profiler on the upper continental slope. The Brazil Current is bounded by the sea surface and the neutral density interface separating South Atlantic Central Water and Antarctic Intermediate Water, which is on average at a reference pressure of 628 ± 46 dbar, and it is confined west of 49.5°W. The Brazil Current has a mean strength of â14.0 ± 2.8 Sv (1 Sv ⥠106 m3 sâ1; negative indicates southward flow) with a temporal standard deviation of 8.8 Sv and peak-to-peak range from â41.7 to +20 Sv. About 80% of the absolute transport variance is concentrated at periods shorter than 150 days with a prominent peak at 100 days. The baroclinic component accounts for 85% of the absolute transport variance, but the barotropic variance is not negligible. The baroclinic and barotropic transports are uncorrelated, demonstrating the need to measure both transport components independently. Given the energetic high frequency transport variations, statistically significant seasonal to interannual variability and trends have yet to be detected.Fil: Chidichimo, MarĂa Paz. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂa Naval. Departamento OceanografĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Centre National de la Recherche Scientifique. Institut de Recherche pour le Developpement. DĂ©partement Ecologie, BiodiversitĂ© et Fonctionnement des EcosystĂšmes Continentaux; FranciaFil: Piola, Alberto Ricardo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂa Naval; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Centre National de la Recherche Scientifique. Institut de Recherche pour le Developpement. DĂ©partement Ecologie, BiodiversitĂ© et Fonctionnement des EcosystĂšmes Continentaux; FranciaFil: Meinen, Christopher S.. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂa Naval. Departamento OceanografĂa; Argentina. National Ocean And Atmospheric Administration; Estados UnidosFil: Perez, Renellys. National Ocean And Atmospheric Administration; Estados UnidosFil: Campos, Edmo. Universidade de Sao Paulo; Brasil. American University Of Sharjah.; Emiratos Ărabes UnidosFil: Dong, Shenfu. National Ocean And Atmospheric Administration; Estados UnidosFil: Lumpkin, Rick. National Ocean And Atmospheric Administration; Estados UnidosFil: Garzoli, S. L.. National Ocean And Atmospheric Administration; Estados Unido
Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy
Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils
In the last decade essential oils have attracted scientists with a constant increase rate of more than 7% as witnessed by almost 5000 articles. Among the prominent studies essential oils are investigated as antibacterial agents alone or in combination with known drugs. Minor studies involved essential oil inspection as potential anticancer and antiviral natural remedies. In line with the authors previous reports the investigation of an in-house library of extracted essential oils as a potential blocker of HSV-1 infection is reported herein. A subset of essential oils was experimentally tested in an in vitro model of HSV-1 infection and the determined IC50s and CC50s values were used in conjunction with the results obtained by gas-chromatography/mass spectrometry chemical analysis to derive machine learning based classification models trained with the partial least square discriminant analysis algorithm. The internally validated models were thus applied on untested essential oils to assess their effective predictive ability in selecting both active and low toxic samples. Five essential oils were selected among a list of 52 and readily assayed for IC50 and CC50 determination. Interestingly, four out of the five selected samples, compared with the potencies of the training set, returned to be highly active and endowed with low toxicity. In particular, sample CJM1 from Calaminta nepeta was the most potent tested essential oil with the highest selectivity index (IC50 = 0.063 mg/mL, SI > 47.5). In conclusion, it was herein demonstrated how multidisciplinary applications involving machine learning could represent a valuable tool in predicting the bioactivity of complex mixtures and in the near future to enable the design of blended essential oil possibly endowed with higher potency and lower toxicity
Phytocomplex Characterization and Biological Evaluation of Powdered Fruits and Leaves from Elaeagnus angustifolia
Fully ripe fruits and mature leaves of Elaeagnus angustifolia were harvested and analyzed by means of analytical and biological tests to better comprehend the chemical composition and therapeutic/nutraceutical potential of this plant. Fruits and leaves were dried and the obtained powders were analyzed to study their color character and (via headspace gas chromatography) describe the chemical profile. Subsequently, they were submitted to a chloroformâmethanol extraction, to a hydroalcoholic extraction procedure assisted or not by microwaves, and to an extraction with supercritical CO2, assisted or not by ethanol as the co-solvent, to detect the polyphenolic and the volatile content. The resulting extracts were evaluated in terms of chlorophyll and carotenoid content, polyphenolic content, volatile fraction, total phenolic content, total flavonoid content, antioxidant activity, radical scavenging activity, and enzymatic inhibition activity. The results confirmed the correlation between the chemical composition and the high antioxidant potential of leaf extracts compared to the fruit extracts in terms of the phenolic and pigment content. A promising effect against tyrosinase emerged for all the extracts, suggesting a therapeutic/nutraceutical use for this plant. Conversely, the volatile content from both natural matrices was similar
- âŠ