127 research outputs found

    Study and implementation of load monitoring on an 11 kV underground cable distribution network

    Get PDF
    Operating and Planning staff of an electricitY supply utility have expressed the opinion that a load monitoring system needed to be installed at protected substations forming part of an 11 kV underground cable reticulation network. Load information was currently only available from feeders connected to the 132/11 kV stepdown substations which provide infeeds to the system. The staff felt that the availability of feeder load information from the protected substation level of the 11 kV ring network would assist in more efficient system planning and more accurate system operation. This request for additional load data constituted the main motivation for the project described in this report. The two main objectives of the project can thus be stated as follows: (i) To prove conclusively that there were benefits to be derived from implementing load monitoring at protected susbstations on the 11 kV reticulation network. (ii) To implement a suitable load monitoring system if the study resulting from (i) proved this was necessary

    Analysis of small-diameter wood supply in northern Arizona - Final report

    Get PDF
    Forest management to restore fire-adapted ponderosa pine ecosystems is a central priority of the Southwestern Region of the USDA Forest Service. Appropriately-scaled businesses are apt to play a key role in achieving this goal by harvesting, processing and selling wood products, thereby reducing treatment costs and providing economic opportunities. The manner in which treatments occur across northern Arizona, with its multiple jurisdictions and land management areas, is of vital concern to a diversity of stakeholder groups. To identify a level of forest thinning treatments and potential wood supply from restoration byproducts, a 20-member working group representing environmental non-governmental organizations (NGOs), private forest industries, local government, the Ecological Restoration Institute at Northern Arizona University (NAU), and state and federal land and resource management agencies was assembled. A series of seven workshops supported by Forest Ecosystem Restoration Analysis (ForestERA; NAU) staff were designed to consolidate geographic data and other spatial information and to synthesize potential treatment scenarios for a 2.4 million acre analysis area south of the Grand Canyon and across the Mogollon Plateau. A total of 94% of the analysis area is on National Forest lands. ForestERA developed up-to-date remote sensing-based forest structure data layers to inform the development of treatment scenarios, and to estimate wood volume in three tree diameter classes of 16" diameter at breast height (dbh, 4.5' above base). For the purposes of this report, the group selected a 16" dbh threshold due to its common use within the analysis landscape as a break point differentiating "small" and "large" diameter trees in the ponderosa pine forest type. The focus of this study was on small-diameter trees, although wood supply estimates include some trees >16" dbh where their removal was required to meet desired post-treatment conditions.4 There was no concurrence within the group that trees over 16" dbh should be cut and removed from areas outside community protection management areas (CPMAs)..

    Sediment grain-size and loss-on-ignition analyses from 2002 Englebright Lake coring and sampling campaigns

    Get PDF
    This report presents sedimentologic data from three 2002 sampling campaigns conducted in Englebright Lake on the Yuba River in northern California. This work was done to assess the properties of the material deposited in the reservoir between completion of Englebright Dam in 1940 and 2002, as part of the Upper Yuba River Studies Program. Included are the results of grain-size-distribution and loss-on-ignition analyses for 561 samples, as well as an error analysis based on replicate pairs of subsamples

    Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    Get PDF
    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development

    Quadrature Strategies for Constructing Polynomial Approximations

    Full text link
    Finding suitable points for multivariate polynomial interpolation and approximation is a challenging task. Yet, despite this challenge, there has been tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable quadrature points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approach and those centered on an optimization strategy. The sampling approaches yield a favorable discretization of the domain, while the optimization methods pick a subset of the discretized samples that minimize certain objectives. While not all strategies follow this two-stage approach, most do. Sampling techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton's method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies

    Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques

    Full text link
    Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Abovecanopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m-2 h-1, although net isoprene deposition fluxes of-0.2 to -2 mg C m-2 h-1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within ±5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m-2 h-1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within ±25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 μg C g-1 h-1 (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m-2 s-1) for oak foliage. An isoprene emission rate capacity of 100 μg C g-1 h-1 for oaks in this region is more realistic and is recommended, based on these measurements
    • …
    corecore