8,380 research outputs found

    Final S020 Skylab experiment report

    Get PDF
    After the loss of the meteroid shield required using the solar scientific airlock to erect the sun shade, methods were improvised to operate the S020 experiment on EVA's. Almost no data was obtained in the wavelength range 10 to 110 A. From 110 to 280 A the spectra were 10 to 100 time less intense than expected. A probable cause in loss of instrument sensitivity is the contamination of the filters by the spacecraft coolant. A list of observed lines in presented. Although less data was obtained than expected, several lines not previously observed were recorded; and the spectra serve to confirm many very faintly observed weak lines recorded from sounding rockets by other experiments

    The Spatial Distribution Of OH And CN Radicals In The Coma Of Comet Encke

    Get PDF
    Multiple potential parent species have been proposed to explain CN abundances in comet comae, but the parent has not been definitively identified for all comets. This study examines the spatial distribution of CN radicals in the coma of comet Encke and determines the likelihood that CN is a photodissociative daughter of HCN in the coma. Comet Encke is the shortest orbital period (3.3 years) comet known and also has a low dust-to-gas ratio based on optical observations. Observations of CN were obtained from 2003 October 22 to 24, using the 2.7 m telescope at McDonald Observatory. To determine the parent of CN, the classical vectorial model was modified by using a cone shape in order to reproduce Encke's highly aspherical and asymmetric coma. To test the robustness of the modified model, the spatial distribution of OH was also modeled. This also allowed us to obtain CN/OH ratios in the coma. Overall, we find the CN/OH ratio to be 0.009 +/- 0.004. The results are consistent with HCN being the photodissociative parent of CN, but we cannot completely rule out other possible parents such as CH(3)CN and HC(3)N. We also found that the fan-like feature spans similar to 90 degrees, consistent with the results of Woodney et al..NASAOffice of the Vice President for Research and Economic Development at Mississippi State UniversityMcDonald Observator

    Helical motions in the jet of blazar 1156+295

    Get PDF
    The blazar 1156+295 was observed by VLBA and EVN + MERLIN at 5 GHz in June 1996 and February 1997 respectively. The results show that the jet of the source has structural oscillations on the milliarcsecond scale and turns through a large angle to the direction of the arcsecond-scale extension. A helical jet model can explain most of the observed properties of the radio structure in 1156+295.Comment: 6 pages, 2 figures, to appear in New Astronomy Reviews (EVN/JIVE Symposium No. 4, special issue

    PREDICTIVE TIME MODEL OF AN ANGLIA AUTOFLOW MECHANICAL CHICKEN CATCHING SYSTEM

    Get PDF
    In this project, a predictive time model was developed for an Anglia Autoflow mechanical chicken catching system. At the completion of poultry growout, hand labor is currently used to collect the birds from the house, although some integrators are beginning to incorporate mechanical catching equipment. Several regression models were investigated with the objective of predicting the time taken to catch the chicken. A regression model relating distance to total time (sum of packing time, catching time, movement to catching and movement to packing) provided the best performance. The model was based on data collected from poultry farms on the Delmarva Peninsula during a six-month period. Statistical Analysis System (SAS) and NeuroShell Easy Predictor were used to build the regression and neural network models respectively. Model adequacy was established by both visual inspection and statistical techniques. The models were validated with experimental results not incorporated into the initial model.Livestock Production/Industries,

    Values of H_0 from Models of the Gravitational Lens 0957+561

    Get PDF
    The lensed double QSO 0957+561 has a well-measured time delay and hence is useful for a global determination of H0. Uncertainty in the mass distribution of the lens is the largest source of uncertainty in the derived H0. We investigate the range of \hn produced by a set of lens models intended to mimic the full range of astrophysically plausible mass distributions, using as constraints the numerous multiply-imaged sources which have been detected. We obtain the first adequate fit to all the observations, but only if we include effects from the galaxy cluster beyond a constant local magnification and shear. Both the lens galaxy and the surrounding cluster must depart from circular symmetry as well. Lens models which are consistent with observations to 95% CL indicate H0=104^{+31}_{-23}(1-\kthirty) km/s/Mpc. Previous weak lensing measurements constrain the mean mass density within 30" of G1 to be kthirty=0.26+/-0.16 (95% CL), implying H0=77^{+29}_{-24}km/s/Mpc (95% CL). The best-fitting models span the range 65--80 km/s/Mpc. Further observations will shrink the confidence interval for both the mass model and \kthirty. The range of H0 allowed by the full gamut of our lens models is substantially larger than that implied by limiting consideration to simple power law density profiles. We therefore caution against use of simple isothermal or power-law mass models in the derivation of H0 from other time-delay systems. High-S/N imaging of multiple or extended lensed features will greatly reduce the H0 uncertainties when fitting complex models to time-delay lenses.Comment: AASTEX, 48 pages 4 figures, 2 tables. Also available at: http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    Get PDF
    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue. (C) 2015 AIP Publishing LLC

    Paper Session III-B - A Lunar Orbiting Node in Support of Missions to Mars

    Get PDF
    Future Mars missions may use lunar-derived oxygen as a propellant for interplanetary transit. A man-tended platform as a Node in low lunar orbit offers a site for storage and transfer of lunar oxygen to the transport vehicles as well as rendezvous and transfer for lunar-bound cargo and crews. In addition, it could provide an emergency safe-haven for a crew awaiting rescue. A conceptual design study yielded an approximate size for the platform needed to support typical oxygen transfer rates which were based upon NASA studies of Mars missions. The Node consists of a gravity gradient stabilized lunar orbiting tank-farm with a storage capacity of 100,000 kg of lunar oxygen, 3,300 kg of lunar cargo and 9,300 kg of Earth supplied hydrogen. An emergency habitat configuration accomodates 14 persons on-board for 110 days. The Node supports an annual lunar oxygen Ereduction of 106 kg with 220,000 kg of oxygen delivered to Earth orbit for an expenditure of 109,000 g of Earth supplied hydrogen

    Driving a Wedge Between Evidence and Beliefs: How Online Ideological News Exposure Promotes Political Misperceptions

    Full text link
    This article has 2 goals: to provide additional evidence that exposure to ideological online news media contributes to political misperceptions, and to test 3 forms this media‐effect might take. Analyses are based on representative survey data collected during the 2012 U.S. presidential election (N = 1,004). Panel data offer persuasive evidence that biased news site use promotes inaccurate beliefs, while cross‐sectional data provide insight into the nature of these effects. There is no evidence that exposure to ideological media reduces awareness of politically unfavorable evidence, though in some circumstances biased media do promote misunderstandings of it. The strongest and most consistent influence of ideological media exposure is to encourage inaccurate beliefs regardless of what consumers know of the evidence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134259/1/jcc412164_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134259/2/jcc412164.pd
    • 

    corecore