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Abstract: 

A new B-dot probe-based diagnostic has been installed on ASDEX Upgrade tokamak to 

characterize ion cyclotron range-of frequencies (ICRF) wave generation and interaction with 

magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to 

measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on 

the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the 

supporting electronics is provided. In order to compare the measured dominant wavenumber of 

the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field 

measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the 

dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing 

scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the 

dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field 

measurements; however, the near-field based reconstruction routine does not account for the 

effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured 

exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted 

k//, as strap phasing moves away from the dipole configuration. An examination of discharges 

heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as 

expected from the difference of the two antennas’ operating frequencies. Beats are observed on 

both the fast and the slow wave probes suggesting that the two waves are coupled outside the 

active antennas. Although the new diagnostic shows consistent trends between the amplitude and 

the phase measurements in response to changes applied by the ICRF antennas, the disagreement 

with the in-air near-field measurements remains. An electromagnetic model is currently under 

development to address this issue. 

Introduction: 

Ion cyclotron range-of frequencies (ICRF) heating is a promising technique to heat magnetically 

confined plasmas to fusion relevant temperatures. Some of the key advantages of ICRF heating 

are 1) inexpensive, readily available technology for radiofrequency (RF) wave generation in the 

10-100 MHz frequency range; 2) the ability to deposit power to the ions, rather than the electrons 

in the plasma; and 3) the ICRF wave accessibility to the core region of high density plasmas. The 

main disadvantage of ICRF heating is the necessity to position the launcher/antenna close to the 

confined plasma due to the fact that the ICRF wave responsible for core heating is evanescent in 

the low plasma density region. The combination of finite plasma density near the confined region 

and strong RF fields near the launcher generate a range of unwanted interactions in tokamaks, 
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such as hot spot formations observed on Tore Supra [ref 1], enhanced sputtering observed on 

Alcator C-Mod [ref 2] and ASDEX Upgrade [ref 3], and local plasma density modifications 

observed on JET [ref 4]. In all cases non-linear interactions between ICRF wave electric fields 

and the plasma sheath are suspected to be the cause [ref 5]. While the local plasma parameters 

(electron temperature, plasma density, and plasma potential) are usually thoroughly diagnosed in 

the tokamak boundary with either Langmuir probes or spectroscopically, direct measurements of 

the local ICRF wave field properties (amplitude, polarization, and wavenumber spectra) are often 

lacking. An appropriate diagnostic choice to measure periodically changing RF magnetic fields 

directly is a B-dot probe (occasionally called a magnetic loop or a current probe). 

ICRF fields have been studied previously in tokamaks using B-dot probe arrays. Examples 

include: 1) a toroidally aligned array of B-dot probes installed on the high-field side of Alcator 

C-Mod for studies of ICRF wave absorption and transmission in the plasma core [ref 6]; 2) a 

passively operated 2-strap antenna on the low-field side of JT-60U for studies of ion cyclotron 

emission by majority and fusion product ions [ref 7]; and 3) a pair of orthogonally-aligned B-dot 

and electric dipole probes installed on the low-field side of TEXTOR and ASDEX for studies of 

parametric decay instabilities [ref 8]. In most cases, the diagnostic focuses on measuring only the 

fast wave fields, rather than the complete wave field structure. In order to have a better resolved 

picture of the ICRF wave field structure in the tokamak boundary plasma, it is necessary to have 

a diagnostic capable of measuring all the relevant local ICRF properties (amplitude, polarization, 

and wavenumber spectrum) simultaneously. 

The goal of the paper is to introduce a newly installed B-dot probe array on ASDEX Upgrade. 

The purpose of the diagnostic is to measure directly the main properties of the local ICRF wave 

field: its amplitude, polarization, and wavenumber. Key components and operating principles of 

the diagnostic are described in detail. The local properties of the measured ICRF wave fields are 

then compared with the expected properties of the launched ICRF waves. Finally, future 

prospects for the diagnostic are outlined. 

Diagnostic Description: 

In order to quantify the properties (amplitude, polarization, and wavenumber spectrum) of ICRF 

fields in the vicinity of the newly installed 3-strap ICRF antennas on ASDEX Upgrade [ref 9], an 

array of high frequency B-dot (HFB) probes was mounted toroidally near the antenna. The HFB 

probe array was installed on the low-field side in Sector 11, approximately midway toroidally 

between the new 3-strap antenna in Sector 12 and the old 2-strap antenna in Sector 10 (Fig. 1). 

The probe array is positioned 6 3 cm below the midplane (Z = 0 m, Fig. 1) at the major radius 

R = 2.286  0.005 m, which is 10 cm radially behind the ICRF protection limiter. The probes on 

the array are positioned to align to the contour of the local magnetic field line (B-field) in a 

standard ASDEX Upgrade discharge (on-axis toroidal magnetic field BT = -2.5 T, total plasma 

current IP = 1.0 MA), the resulting array inclination to the horizontal is ~11o. The array consists 

of 6 probe pairs and each pair consists of a “fast” and a “slow” wave probe, where the “fast” 

probe is oriented to be sensitive to the RF magnetic fields aligned parallel to B-field and the 

“slow” probe is oriented to pick up the RF magnetic fields perpendicular to B-field. The “fast” 

probes are labeled ‘1’, ‘3’, ‘5’, ‘7’, ‘9’, and ‘11’ and the “slow” probes are ‘2’, ‘4’, ‘6’, ‘8’, and 



*For authors list, see U. Stroth et al., Nucl. Fusion 53, 104003A (2013). 
 

‘10’ (Fig. 1 and Fig. 2 (a)). The outer dimensions of a single probe are shown in Fig. 2 (b) and 

(d), where the coil and the cable connection is also displayed. The coil is soldered with a vacuum 

compatible solder to a pair of copper clamps to ensure a good electrical connection (Fig. 2 (c) 

and (d)). The coil itself is a vacuum-compatible inductor from Sumida (series 5120, 8 turns, 7 

mm outer diameter, inductance L = 177 nH, quality Q = 120 @ 30 MHz [ref 10]). The inductor 

is connected via a vacuum-compatible triaxial 50  cable from elspec GmbH (series TR31601, 

3.56 mm outer diameter, 1.4 dB attenuation per 10 m @ 30 MHz [ref 11]). The outermost 

conductor of the cable is grounded to the stainless steel probe body and, hence, to the common 

ground of Sector 11 (Fig. 2 (d)). The inner most and the 2nd innermost conductors of the cable 

are crimped to a pair of terminals and then bolted to the two coil copper clamps via a PEEK 

insulating mounting plate (Fig. 2 (c)). RF signals enters the probe through a 1 mm  10 mm slit 

(Fig. 2 (b)). A 1 mm thick ceramic plate is placed between the slit and the coil to prevent direct 

contact between plasma and the coil (Fig. 2 (c)). The final position coordinates (major radius R, 

vertical position Z, and toroidal angle tor) of the probe array were measured with a sub-mm 

accuracy using a FARO coordinate measuring machine [ref 12]. 

Amplitude and phase () are two of the fundamental properties of an RF wave. The measurement 

of the amplitude and the phase difference () between a pair of RF coils/signals is achieved 

using a two-channel (U1 and U2) logarithmic (log) RF detector. The RF amplitude is converted 

into a DC signal using an rms-responding power detector stage from Analog Devices (AD8362 

[ref 13]), as shown in Figure 3 (a). The phase difference between two RF signals is converted 

into a DC signal using a phase detector stage from Analog Devices (AD8302 [ref 14]). Note that 

the phase detector stage is based on an exclusive OR gate technique to detect the phase 

difference between a pair of RF signals and, as a result, can only unambiguously measure  up 

to 180o [ref 14]. To detect up to 360o, the input phase of U1 was shifted by 90o and  was 

measured simultaneously between U1 and U2 and between U1+90o and U2, as shown in Fig. 3 

(b). Additionally, note that the output of the phase detector stage reaches a stable value only 

when the amplitude of the two RF input signals is above a threshold value Uout = 0.75 V, 

equivalent to the input power of approximately -30 dBm at the detector (Fig. 3 (c)). The 

frequency response range of the log detector and the B-dot probe is limited to 10-50 MHz. This 

bandpass limit is set by a combination of high and low pass filters in the log detector. The Q 

response of the coil is also measured and found to be in agreement with the specifications 

provided by the manufacturer [ref 10]. 

To convert raw amplitude signals measured by the probes to absolute quantities, it is necessary to 

measure a known RF field. The absolute response of the probes to a known RF B-field was 

calibrated using a 9”, 50  coaxial transmission line, excited with a 30 MHz signal of a known 

power and terminated with a 50  load. The probes were placed at the radial location of the 

transmission line outer conductor and oriented either parallel (//) or perpendicular () to the 

excited B-field orientation (azimuthal). The probes were connected to a log detector using the 

final assembly of in-vacuum triaxial cables, where each is 4 m long. The resulting calibration 

curves of a typical probe and in-vacuum cable assembly is shown in Fig. 4. The curve for the 

probe orientation  to RF B-field remains at 0 V, as expected for a coaxial transmission line. 
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This result demonstrates that 1) the coil is well-aligned inside the probe housing and 2) the coil is 

well-shielded by the stainless steel housing from electrostatic fields. The following relation is 

used to relate the total time-averaged power (|Pav|) flowing through the transmission line and the 

time-averaged Poynting flux (P) at the probe location: 

𝑃 =
|Pav|

2𝜋𝑏2 ln
𝑏
𝑎

 

where b is the radius of the outer conductor of the transmission line (b = 0.114 m) and a is the 

radius of the inner conductor (a = 0.050 m). The phase shifts between individual probe and in-

vacuum cable assemblies in the HFB probe array were also measured and found to be <5o, low 

enough to be ignorable. Outside the vacuum vessel the probe array is connected via direct current 

(DC) breaks and 22 m long low-loss LMR-400-UF cables (~0.6 dB attenuation at 30 MHz) to 

the log detectors inside an instrumentation rack. Additionally, individual probe signals are split 

via 3 dB power splitters and attenuated by 10 dB attenuators before entering the input terminals 

of the log detectors. The total attenuation of the RF probe signals outside the vacuum vessel is 

~14 dB. The DC outputs of the log detectors are digitized using a real-time data acquisition 

system based on a serial input/output (SIO) computer interface [ref 15]. The raw DC signals are 

sampled by the SIO system at 200 kHz with a 16 Bit resolution over a  10 V range. 

Experimental Method: 

The method used to reconstruct the dominant wavenumber k of the local RF field from the wave 

phase and position measurements is outlined below. From the definition of the phase   kx - t, 

where x is the distance,  is the angular frequency of the wave, and t is time, the dominant 

wavenumber k is obtained from the slope of the  = (x) curve, i.e. k = d/dx. The frequency 

dependence does not enter this equation as long as the wave phase is sampled simultaneously at 

the measurement points. An example of this method is shown in Fig. 5, where k was measured 

for an RF wave (source frequency f = 30 MHz) propagating in air inside a 9”, 50  transmission 

line. The measured |k| = 0.621  0.043 m-1 agrees with the expected value k = /c = 2  30e6 

Hz / 3e8 m/s = 0.628 m-1, where c is the speed of light in air. 

Low power near-field RF measurements immediately in front of the Faraday screen of a 3-strap 

antenna were performed using a Wandel & Goltermann RF field radiation meter ([ref 16] series 

EMR-20) in order to estimate the dominant wavenumber of the launched ICRF waves for various 

cases of strap amplitude ratio and strap phasing. The measurements were performed in air and, as 

a result, the RF power coupling was low, typically <20% of the power provided by the source. In 

order to minimize the impact of the reflected power on the near-field RF wave distribution, the 

following procedure was followed. Either the central strap or the side straps were powered, while 

the remaining strap was terminated with a 50  load. The corresponding time-averaged values of 

the Poynting flux measurement immediately in front of the Faraday screen of the 3-strap antenna 

are shown in Fig. 6 (a) and (b). These profiles were then used to calculate the RF B-field 

profiles, assuming that the dominant field component is toroidal and the vacuum relation holds 

between the time-averaged Poynting flux P and the RF B-field: |B-RF field| = (2oP/c), where 
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o is the vacuum permeability. The cases of dipole (0, , 0) and monopole (0, 0, 0) strap phasing, 

where the peak RF B-field ratio between the central and the side straps is 2, are shown in Fig. 6 

(c). The phase shifts between the two strap contributions are 180o and 0o for the dipole and 

monopole cases, respectively, and are assumed to be constant across the entire antenna surface. 

The resulting dominant launched toroidal wavenumbers (ktor) are ~9 m-1 and ~1 m-1 for the 

dipole and monopole cases, respectively (Fig. 6 (d)). Note that the monopole case has a 

secondary ktor at ~20 m-1 (Fig. 6 (d)). 

Experimental Results and Discussion: 

The first data with the new HFB probe array diagnostic was obtained during the conditioning 

phase of the 2015-2016 experimental campaign on ASDEX Upgrade. The discharges were 

ELMy H-modes (on-axis magnetic field BT = -2.0 – -2.5 T, total plasma current IP = 0.8 – 1.0 

MA, lower single null configuration). The negative direction of BT indicates that the magnetic 

field is in the opposite direction to the plasma current direction. The hydrogen fraction (H/D) 

was <8%, as measured by a passive neutral particle analyzer operated in the thermal energy 

regime [ref 17]. The low H/D fraction ensured good ICRF single pass absorption in the hydrogen 

minority scheme at either 30.0 MHz (for the case of BT = -2.0 T) or 36.5 MHz (for BT = -2.5 T). 

Changes in strap phasing are expected to have a strong impact on the dominant wavenumber 

launched by an ICRF antenna. Fig. 7 shows the variation of the local ICRF field properties 

during a strap phasing scan on the 3-strap antenna, the data is shown for between-ELM periods 

only. The ICRF power (1.4 MW) and the central- to-side strap amplitude ratio (~2) were kept 

constant. The strap phasing was scanned by +25/-35o away from the dipole configuration (Fig. 7 

(a)). The resulting phase change of the local ICRF field shows an increase away from the dipole 

configuration (Fig. 7 (b) and (e)), implying an upshift in the measured local k// (Fig. 7 (f)). The 

local ICRF field amplitude changes reveal that the amplitude minimum occurs not at the dipole 

configuration but at +1015o away from the antenna dipole configuration (Fig. 7 (c) and (d)). 

Note that the local ICRF wave amplitude became too low during 0o < Strap phasing < 25o for a 

reliable phase change measurement with the log detectors, which resulted in a large scatter of the 

data (Fig. 7 (b) and (e)). The expected ktor values, as estimated from in-air near-field 

measurements (Fig. 6) are also shown with blue crosses (Fig. 7 (e)). The observed upshift in k// 

as the strap phasing is changed away from the dipole configuration is consistent with the increase 

in the amplitude of the local ICRF fields: the launched ICRF wave coupling/accessibility to the 

core begins to drop exponentially as k// increases resulting in an exponential rise in the wave 

power deposited in the boundary plasma (Fig. 7 (d)). The trend in the expected ktor value is in the 

opposite direction to the measured k// trend. However, the in-air near-field measurements do not 

account for the effect of induced RF fields in the antenna box on the launched k// [ref 18], which 

likely differ between a poorly matched vacuum case and a well-matched case in the presence of 

plasma. It is also possible that the local RF fields (which are measured toroidally between two 

limiter structures) become modified by the conducting boundaries in Sector 11 of ASDEX 

Upgrade, thereby losing information on the launched ICRF wave properties. 

In order to avoid coupling between the 3-strap and 2-strap antennas, when powered 

simultaneously, the 2-strap antenna operating frequency is set at 1 kHz higher than the nominal 
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frequency. As a result, we expect to observe 1 kHz beat waves in discharges heated with both 

ICRF antennas. These waves are, in fact, observed on both the fast wave and the slow wave 

probes (Fig. 8 (a)). Although the fast wave signal expectedly dominates, the non-zero amplitude 

of the slow wave beats suggests that the two waves are coupled outside the active antenna [ref 

19]. The spectral analysis in the frequency domain reveals the interaction between edge localized 

modes (ELMs), which peak near 100 Hz, and beats with a mode appearing near 1100 Hz (Fig. 8 

(b)). This mode is not present when only one of the antennas is energized. 

Overall, the signals on the new HFB probe array show the expected response to the changes 

imposed by the source – the ICRF antennas. A strap phasing scan away from the dipole 

configuration reveals a phase response of the local ICRF fields consistent with an upshift in local 

k//. The exponential rise in the amplitude response is also in agreement with the observed k// 

trend. Operating the two ICRF antennas simultaneously generates 1 kHz beat waves, as 

expected; however, the beats are observed on both the fast and the slow wave probes pointing 

that the two waves may be coupled outside the active antennas.  

Conclusion: 

A new B-dot probe-based diagnostic has been designed, constructed, installed, and successfully 

operated in ICRF-heated discharges on ASDEX Upgrade. The purpose of the diagnostic is to 

characterize ICRF wave field properties (their amplitude, polarization, and wavenumber) in the 

boundary of ICRF-heated discharges. The diagnostic has been installed on the low field side of 

ASDEX Upgrade in Sector 11 in the toroidal vicinity of two ICRF antennas (Fig. 1). The probe 

array consists of six B-dot probe pairs, field-aligned to a standard ASDEX Upgrade discharge 

(Fig. 2 (a)). Each pair has a probe aligned parallel and perpendicular to the local B-field direction 

to be sensitive to fast and slow ICRF B-fields, respectively. The probe array is connected to a 

rack of absolutely calibrated log detectors, the purpose of which is to convert RF signals (their 

amplitude and phase) into DC signals. The DC signals are then digitized and stored for data 

analysis. The probe response to a known RF B-field has also been absolutely calibrated on a 9”, 

50  coaxial transmission line. 

ICRF strap phasing scans with the 3-strap antenna reveal that the wavenumber of the local ICRF 

fields becomes upshifted as strap phasing is moved away from the dipole configuration (Fig. 7 

(f)). At the same time the amplitude of the local ICRF fields increases exponentially (Fig. 7 (d)), 

which is consistent with the observed k// upshift. The expected ktor spectrum trend, reconstructed 

from in-air near-field measurements (Fig. 6), is in the opposite direction (Fig. 7 (f)); however, 

the reconstructed spectrum does not account for RF currents induced in the passive antenna 

structures. It is also possible that the local ICRF fields become modified by surrounding 

conducting structures and, as a result, show a different wave spectrum as the one expected from 

the simple in-air prediction. Measurements in discharges heated with the 3-strap and 2-strap 

antennas simultaneously reveal the existence of beat waves (Fig. 8), the frequency of which (1 

kHz) is equal to the difference between the operating frequencies of the 2-strap and 3-strap 

antennas. The beats are observed on both the fast wave and the slow wave probes, suggesting 

that the two wave fields may be coupled outside the active antennas. 
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The HFB probe array is currently being complemented by individual probe pairs in other 

Sectors, with probes in Sector 1 and 3 already installed. The purpose of these additional pairs is 

to reconstruct the global toroidal distribution of fast and slow ICRF fields in the boundary of the 

low field side of ICRF-heated discharges on ASDEX Upgrade. It will then be possible to 

constrain the development of global three dimensional ICRF wave simulations on ASDEX 

Upgrade. 
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Figures: 

Figure 1 

 

Figure 1: An unfolded view along the major radius R of the outer wall of ASDEX Upgrade. The 

shown sectors are 10, 11, and 12. The highlighted structures are the 3-strap antenna in Sector 12, 

the 2-strap antenna in Sector 10, and the high frequency B-dot (HFB) probe array in Sector 11. 

The red solid line with an arrow shows the contour and the direction of the local magnetic field 

line (B-field) in a standard ASDEX Upgrade discharge (BT = 2.5 T, IP = 1.0 MA). The 

midplane (Z = 0 m) is shown with a dashed black line. Yellow solid lines across antennas 

indicate the inclination of the antenna Faraday screen (not shown). The probe array is inclined by 

~11o to the midplane. Numbers ‘1’ through ‘12’ refer to individual probes in the HFB probe 

array, see Fig. 2 for more details. 

  



*For authors list, see U. Stroth et al., Nucl. Fusion 53, 104003A (2013). 
 

Figure 2 

 

Figure 2: (a) A detailed view along the major radius R of the HFB probe array. The probe array 

is aligned to the local contour of the magnetic field line (B-field) for a standard ASDEX Upgrade 

discharge (BT = 2.5 T, IP = 1.0 MA). The “fast” wave probes are labeled ‘1’, ‘3’, ‘5’, ‘7’, ‘9’, 

and ‘11’; the “slow” wave probes are labeled ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, and ‘12’. The overall length 

of the probe array along B-field is shown. (b) A front view (from the plasma along R) of a single 

probe. (c) A top view of a single probe with the top cover removed and internal components 

shown. (d) A side (cut) view of a single probe, the direction of R is shown. The overall 

dimensions of a single probe are also shown. 
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Figure 3 
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Figure 3: Typical response functions of a two-channel logarithmic RF detector. (a) The output of 

the amplitude detection stage for channel 1 (U1) and channel 2 (U2) @ 30 MHz and 36.5 MHz 

vs. the input RF power. (b) The output of the phase detection stage as a function of the input 

phase difference between U1 and U2 and between U1+90o and U2 @ 30 MHz and 36.5 MHz. (c) 

The output of the phase detection stage as a function of the output of the amplitude stage. The 

threshold amplitude value above which the output of the phase detector stage is stable is shown. 
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Figure 4: Calibration curves of Probe ‘1’ positioned at the radius of the outer conductor of a 9”, 

50  coaxial line. The curves are shown for the orientation of the probe parallel (//) to the 

excited RF B-field (open red squares) and perpendicular () to the excited RF B-field (open blue 

triangles). The coaxial line is terminated with a 50  load. 
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Figure 5: An example of a |k| measurement of an RF wave travelling along a 9”, 50  

transmission line in air. The open red squares are measurements and the solid red line is a linear 

fit. The RF frequency is 30 MHz. 
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Figure 6 

 

Figure 6: The time-averaged Poynting flux P measurements immediately in front of the Faraday 

screen of a 3-strap antenna for the case of (a) the central strap powered by ~10 W and the side 

straps terminated by 50  and (b) the side straps powered by ~10 W and the central strap 

terminated by 50 . (c) The resulting RF B-field amplitude profile along the row highlighted in 

(b) for dipole (0, , 0) and monopole (0, 0, 0) strap phasing. The peak RF B-field amplitude ratio 

between the central and side straps is 2. The dominant RF B-field component is assumed be 

toroidal and the relation between RF B-field and P is assumed vacuum-like. (d) The resulting 

launched toroidal wavenumber (ktor) spectra for dipole and monopole strap phasing. 
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Figure 7: 
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Figure 7: An example of a strap phasing scan on the 3-strap antenna at constant ICRF power and 

constant strap amplitude ratio. (a) The time history of the 3-strap antenna strap phasing (Strap 

phasing). (b) The time history of the phase shift between probes 3 and 5 (Probe3-5). (c) The time 

history of the local ICRF field amplitude at probes 3 and 5. (d) The local ICRF field amplitude as 

a function of the 3-strap antenna strap phasing. (e) The phase shift between probes 3 and 5 as a 

function of the 3-strap antenna strap phasing. (f) The measured dominant fast wave wavenumber 

(k//) as a function of the 3-strap antenna phasing. The measurement is based on the phase shifts 

between probes 1 and 3, probes 3 and 5, and probes 5 and 7. The ktor values expected from in-air 

near-field measurements (Fig. 6) are shown as blue crosses at  = -30o and 0o. The ICRF power 

was constant at 1.4 MW. 
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Figure 8: 
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Figure 8: An example of beat waves observed in a discharge heated with the 2-strap and 3-strap 

antennas simultaneously. The fast and slow wave measurements are from Probe ‘1’ and Probe 

‘2’, respectively. The beats are shown in (a) the amplitude and (b) the frequency domain. The 

total launched ICRF power PICRF = 3.9 MW. The frequency spectrum reveals edge localized 

modes (ELMs) at ~100 Hz and the interaction between beats and ELMs at ~1100 Hz. The DC 

response of the spectrum is suppressed. 


