The lensed double QSO 0957+561 has a well-measured time delay and hence is
useful for a global determination of H0. Uncertainty in the mass distribution
of the lens is the largest source of uncertainty in the derived H0. We
investigate the range of \hn produced by a set of lens models intended to mimic
the full range of astrophysically plausible mass distributions, using as
constraints the numerous multiply-imaged sources which have been detected. We
obtain the first adequate fit to all the observations, but only if we include
effects from the galaxy cluster beyond a constant local magnification and
shear. Both the lens galaxy and the surrounding cluster must depart from
circular symmetry as well.
Lens models which are consistent with observations to 95% CL indicate
H0=104^{+31}_{-23}(1-\kthirty) km/s/Mpc. Previous weak lensing measurements
constrain the mean mass density within 30" of G1 to be kthirty=0.26+/-0.16 (95%
CL), implying H0=77^{+29}_{-24}km/s/Mpc (95% CL). The best-fitting models span
the range 65--80 km/s/Mpc. Further observations will shrink the confidence
interval for both the mass model and \kthirty.
The range of H0 allowed by the full gamut of our lens models is substantially
larger than that implied by limiting consideration to simple power law density
profiles. We therefore caution against use of simple isothermal or power-law
mass models in the derivation of H0 from other time-delay systems. High-S/N
imaging of multiple or extended lensed features will greatly reduce the H0
uncertainties when fitting complex models to time-delay lenses.Comment: AASTEX, 48 pages 4 figures, 2 tables. Also available at:
http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm