14 research outputs found
Deep carbon storage potential of buried floodplain soils.
Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration
Recommended from our members
Deep carbon storage potential of buried floodplain soils.
Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration
Recommended from our members
From berries to blocks: carbon stock quantification of a California vineyard.
Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.Total vine C was estimated at 12.3 Mg C ha-1, of which 8.9 Mg C ha-1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha-1 from leaves and canes and 1.7 Mg C ha-1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks
Recommended from our members
From berries to blocks: carbon stock quantification of a California vineyard.
Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.Total vine C was estimated at 12.3 Mg C ha-1, of which 8.9 Mg C ha-1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha-1 from leaves and canes and 1.7 Mg C ha-1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks
Recommended from our members
From berries to blocks: carbon stock quantification of a California vineyard.
BackgroundQuantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.ResultsTotal vine C was estimated at 12.3 Mg C ha-1, of which 8.9 Mg C ha-1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha-1 from leaves and canes and 1.7 Mg C ha-1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).ConclusionsVineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks
From berries to blocks: carbon stock quantification of a California vineyard
Abstract Background Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Results Total vine C was estimated at 12.3 Mg C ha−1, of which 8.9 Mg C ha−1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha−1 from leaves and canes and 1.7 Mg C ha−1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96). Conclusions Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks
Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils
Soil organic matter is central to the soil health framework. Therefore, reliable indicators of changes in soil organic matter are essential to inform land management decisions. Permanganate oxidizable carbon (POXC), an emerging soil health indicator, has shown promise for being sensitive to soil management. However, strict standardization is required for widespread implementation in research and commercial contexts. Here, we used 36 soils—three from each of the 12 USDA soil orders—to determine the effects of sieve size and soil mass of analysis on POXC results. Using replicated measurements across 12 labs in the US and the EU (n = 7951 samples), we quantified the relative importance of 1) variation between labs, 2) variation within labs, 3) effect soil mass, and 4) effect of soil sieve size on the repeatability of POXC. We found a wide range of overall variability in POXC values across labs (0.03 to 171.8%; mean = 13.4%), and much of this variability was attributable to within-lab variation (median = 6.5%) independently of soil mass or sieve size. Greater soil mass (2.5 g) decreased absolute POXC values by a mean of 177 mg kg−1 soil and decreased analytical variability by 6.5%. For soils with organic carbon (SOC) >10%, greater soil mass (2.5 g) resulted in more frequent POXC values above the limit of detection whereas the lower soil mass (0.75 g) resulted in POXC values below the limit of detection for SOC contents −1 while decreasing the analytical variability by 1.8%. In general, soils with greater SOC contents had lower analytical variability. These results point to potential standardizations of the POXC protocol that can decrease the variability of the metric. We recommend that the POXC protocol be standardized to use 2.5 g for soils <10% SOC. Sieve size was a relatively small contributor to analytical variability and therefore we recommend that this decision be tailored to the study purpose. Tradeoffs associated with these standardizations can be mitigated, ultimately providing guidance on how to standardize POXC for routine analysis.</p