351 research outputs found

    Spectroscopy of 50^{50}Sc and ab initio calculations of B(M3)B(M3) strengths

    Full text link
    The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in 50^{50}Sc following the β\beta-decay of 50^{50}Ca. Branching ratios were determined from the measured γ\gamma-ray intensities, and angular correlations of γ\gamma rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an M3M3 transition with a B(M3)B(M3) strength of 13.6(7)\,W.u. has been confirmed. We compare with the first {\it ab initio} calculations of B(M3B(M3) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and M3M3 operator. The experimental data are well reproduced for isoscalar M3M3 transitions when using bare gg-factors, but the strength of isovector M3M3 transitions are found to be underestimated by an order of magnitude

    Variation in carbon footprint of milk due to management differences between Swedish dairy farms

    Get PDF
    To identify mitigation options to reduce greenhouse gas (GHG) emissions from milk production (i.e. the carbon footprint (CF) of milk), this study examined the variation in GHG emissions among dairy farms using data from previous CF studies on Swedish milk. Variation between farms in these production data, which were found to have a strong influence on milk CF were obtained from existing databases of e.g. 1051 dairy farms in Sweden in 2005. Monte Carlo analysis was used to analyse the impact of variations in seven important parameters on milk CF concerning milk yield (energy corrected milk (ECM) produced and delivered), feed dry matter intake (DMI), enteric methane emissions, N content in feed DMI, N-fertiliser rate and diesel used on farm. The largest between farm variation among the analysed production data were N-fertiliser rate (kg/ha) and diesel used (l/ha) on farm (coefficient of variation (CV) 31-38%). For the parameters concerning milk yield and feed DMI the CV was approx. 11 and 8%, respectively. The smallest variation in production data was found for N content in feed DMI. According to the Monte Carlo analysis, these variations in production data led to a variation in milk CF of between 0.94 and 1.33 kg CO2 equivalents (CO2e) per kg ECM, with an average value of 1.13 kg/CO2e kg ECM. We consider that this variation of ±17% that was found based on the used farm data would be even greater if all Swedish dairy farms were included, as the sample of farms in this study was not totally unbiased. The variation identified in milk CF indicates that a potential exists to reduce GHG emissions from milk production on both national and farm level through changes in management. As milk yield and feed DMI are two of the most influential parameters for milk CF, feed conversion efficiency (i.e. units ECM produced per unit DMI) can be used as a rough key performance indicator for predicting CF reductions. However, it must be borne in mind that feeds have different CF due to where and how they are produced

    Microscopic method for E0 transition matrix elements

    Get PDF
    We present a microscopic model for electric monopole (E0) transition matrix elements by combining a configuration interaction model for orbital occupations with an energy-density functional model for the singleparticle potential and radial wave functions. The configuration interaction model is used to constrain the orbital occupations for the diagonal and off-diagonal matrix elements. These are used in an energy-density functional calculation to obtain a self-consistent transition density. This density contains the valence contribution, as well as the polarization of the protons by the valence protons and neutrons. We show connections between E0 matrix elements and isomer and isotope shifts of the charge radius. The spin-orbit correction to the charge density is important in some cases. This model accounts for a large part of the data over a wide region of the nuclear chart. It also accounts for the shape of the observed electron scattering form factors. The results depend on the Skyrme parameters used for the energy-density functional and might be used to provide new constraints for them.B.A.B acknowledges U.S. NSF Grant No. PHY-1404442. A.B.G. acknowledges support from NSERC, Canada. T.K. and A.E.S. acknowledge support from Australian Research Council Grant No. DP140102986. We thank George Bertsch and John Wood for their comments on the manuscript

    High-Precision Measurement of the 19Ne Half-Life and Implications for Right-Handed Weak Currents

    Full text link
    We report a precise determination of the 19Ne half-life to be T1/2=17.262±0.007T_{1/2} = 17.262 \pm 0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.Comment: 5 pages and 5 figures. Paper accepted for publication in Phys. Rev. Let

    Effect of feeding cows with unsaturated fatty acid sources on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream

    Get PDF
    Simple Summary: The objective of this study was to evaluate the effects of supplementation of dairy cows' diets with different fatty acid (FA) sources on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. Supplementation (3% dry matter (DM)) of diets with soybean oil (SO) and fish oil (FO) did not have detrimental effects on milk production, milk composition, or ice cream physicochemical and sensory characteristics. From a human standpoint, SO and FO improved the FA profile of milk. Abstract: The objective of this study was to evaluate the effects of supplementation of dairy cows with different fatty acid sources (soybean oil (SO) and fish oil (FO)) on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. During 63 days, fifteen Holstein cows averaging 198 ± 35 days in milk were assigned to three groups: control diet with no added lipid (n = 5 cows); and supplemented diets with SO (n = 5 cows; unrefined SO; 30 g/kg DM) or FO (n = 5 cows; FO from unrefined salmon oil; 30 g/kg DM). Milk production, milk fat, and milk protein were not affected by treatments. Saturated fatty acids in milk fat were decreased with SO and FO compared with control. C18:2 cis-9, cis-12 was increased with SO whereas C18:2 cis-9, trans-11, C20:3n-3, C20:3n-6, C20:5n-3, and C22:6n-3 were the highest with FO. Draw temperature and firmness were higher in SO compared to control and FO ice creams. Melting resistance was higher in FO compared with control and SO ice creams. Supplementation of cow diets with SO and FO did not have detrimental effects on milk production, or ice cream physicochemical and sensory characteristics

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure

    Nuclear structure and reaction studies at SPIRAL

    Get PDF
    The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new "magic numbers", tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics
    corecore