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We present a microscopic model for electric monopole (E0) transition matrix elements by combining a
configuration interaction model for orbital occupations with an energy-density functional model for the single-
particle potential and radial wave functions. The configuration interaction model is used to constrain the orbital
occupations for the diagonal and off-diagonal matrix elements. These are used in an energy-density functional
calculation to obtain a self-consistent transition density. This density contains the valence contribution, as well
as the polarization of the protons by the valence protons and neutrons. We show connections between E0 matrix
elements and isomer and isotope shifts of the charge radius. The spin-orbit correction to the charge density is
important in some cases. This model accounts for a large part of the data over a wide region of the nuclear chart.
It also accounts for the shape of the observed electron scattering form factors. The results depend on the Skyrme
parameters used for the energy-density functional and might be used to provide new constraints for them.
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Introduction. Electric monopole (E0) transitions between
spin-zero states in atomic nuclei were first suggested by
Gamow [1] when interpreting a mysterious electron line in
the β-decay spectrum of radon [2]. Single-photon 0 → 0 tran-
sitions are strictly forbidden. E0 transitions can only proceed
via internal conversion, electron-positron pair conversion, or
very rarely by double-photon emission. E0 transitions between
the first excited 0+ state and the 0+ ground state are one
of the dominant features of the low-energy nuclear structure
of even-even nuclei. The total E0 transition probability,
W (E0) = �(E0) ρ2(E0), for a transition between the initial
and final states, |i〉 and |f 〉, conveniently can be separated into
electronic, �(E0), and nuclear, ρ(E0), factors. The quantity
ρ(E0) is the dimensionless monopole transition strength,
carrying all the information about the nuclear structure, and is
related to the monopole matrix element, M(E0), by

ρ(E0) = 〈f |M(E0)|i〉/(eR2), (1)

where R is the nuclear radius in fm defined by R = 1.2A1/3.
The operator is M(E0) = r2 ≡ e

∑
i r

2
i , where the sum is

over all protons in the nucleus. It is widely accepted that E0
transitions provide sensitive tests [3] of various nuclear struc-
ture models for understanding volume oscillations, isotope and
isomer shifts, and, in particular, nuclear shape coexistence [4].

In recent years there has been a resurgence in the number
of measurements of E0 transition strengths encouraged by
their association with shape coexistence. There are relatively
few E0 transition strengths known experimentally, mainly due
to the challenging nature of the necessary parent lifetime
and E0 branching ratio measurements. Although a lifetime
measurement can be made by detecting a competing γ -ray
branch, a range of experimental techniques are necessary as
the lifetimes of the parent state can vary from femtoseconds
to hundreds of nanoseconds. The branching ratio must come
from electron spectroscopy which can be hindered by the

relatively low emission intensities, in comparison to γ -ray
emission, in addition to large backgrounds, especially during
in-beam measurements. Nevertheless, there are now a number
of experimental setups becoming available worldwide that
are bringing new concepts and modern equipment to face
these challenges [5–10]. With renewed interest and renewed
capabilities, it is expected that the number of experimentally
measured E0 transition strengths will dramatically increase
over the next several years.

Previous calculations of E0 transition strengths are mostly
based on collective models and shape coexistence [3,4,11–15].
In this paper we present a theoretical model for E0 matrix
elements based on a combination of configuration interaction
(CI) results in a spherical basis for orbital occupations, together
with energy-density functional (EDF) calculations for the
monopole core polarization. This core polarization is caused
by the change in the nodal structure of the radial wave functions
for the orbitals that participate in the valence transition. The
core polarization is not proportional to the valence E0 matrix
element.

Previous models starting with a spherical basis are based
on two-level models, e.g., Refs. [16,17], and others reviewed
in Ref. [3]. Our method is a generalization of the two-level
model and makes connections to isomer and isotope shifts via
a common EDF approach. We choose several cases across
the nuclear chart for which good wave functions with CI
methods can be obtained and for which there are rather precise
experimental data on E0 matrix elements. We start with the
case of 90Zr for which a two-level model for the two 0+
states is a good approximation and make a connection to
the observed isomer shift (the change in the charge radius
between the isomeric excited state and the ground state) for
89Y. Then we proceed to the cases of 206Pb and 68Ni that
are determined by a CI space with valence neutrons. Finally,
we show results for the more complicated cases of 26Mg,
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32S, and 58Ni where both valence protons and neutrons are
involved.

Application to a two-level model for 90Zr. Our discussion
for 90Zr is similar to previous results based on a two-level
model summarized in Ref. [3]. However, it will be used to
formulate a more general approach for the CI method and its
connection to EDF results. In the shell model these two 0+
states are dominated by the mixing of the configurations

|a〉 = |Ca,(1p1/2)2〉
and

|b〉 = |Cb,(0g9/2)2〉, (2)

where C represents the 88Sr closed-shell configuration for
neutrons up to N = 50[0s2

1/2,0p4
3/2,0p2

1/2,0d6
5/2,0d4

3/2,1s2
1/2,

0f 8
7/2,0f 6

5/2,1p4
3/2,1p2

1/2,0g10
9/2] and for protons up to Z =

38 [0s2
1/2, 0p4

3/2, 0p2
1/2, 0d6

5/2, 0d4
3/2, 1s2

1/2, 0f 8
7/2, 0f 6

5/2,1p4
3/2].

The proton (q = p) and neutron (q = n) radial densities of
these two configurations are given by

ρqx(r) =
∑

k

Oqxk ψ2
qxk(r), (3)

where x = a/b and k = (n,�,j ) are the quantum numbers for
the spherical single-particle wave functions, ψqxk(r)[Y (�)(r̂) ⊗
χ (s)](j ). The O are the orbital occupations. In this case Ok =
(2j + 1) for the filled neutrons up to N = 50 and for the filled
protons up to Z = 38. The occupations are zero for all other
orbitals except Opa,1p1/2 = 2 and Opb,0gg/2 = 2. The sum over
k is for the 11 orbitals given above.

In the simplest model the radial wave functions, ψ , only
depend on k, and the core wave functions Ca and Cb are the
same. However, in the EDF model ψ also depends on q as
well as a and b since the different orbital occupancies lead to
different self-consistent potentials and slightly different radial
wave functions for the orbitals in the core Ca and Cb.

The volume integral of Eq. (3) is (Z/N ) for q = (p/n).
The matrix element of the E0 operator for protons is

∫
ρpxr

2 dτ = 〈x|r2|x〉p =
∑

k

Opxk 〈pxk|r2|pxk〉. (4)

In the two-level model these two proton configurations are
mixed:

|0+
1 〉 = α|a〉 + β|b〉

and

|0+
2 〉 = β|a〉 − α|b〉, (5)

with β = ±√
1 − α2.

With maximal mixing, α = β = 1/
√

2, the r2 matrix
elements are

〈0+
1 |r2|0+

1 〉 = 〈0+
2 |r2|0+

2 〉 = 1
2 [〈b|r2|b〉 + 〈a|r2|a〉]

= 1
2 〈Cb|r2|Cb〉 + 1

2 〈Ca|r2|Ca〉
+ 〈0g9/2|r2|0g9/2〉 + 〈1p1/2|r2|1p1/2〉 (6)

and

〈0+
1 |r2|0+

2 〉 = 1
2 [〈b|r2|b〉 − 〈a|r2|a〉]

= 1
2 〈Cb|r2|Cb〉 − 1

2 〈Ca|r2|Ca〉
+ 〈0g9/2|r2|0g9/2〉 − 〈1p1/2|r2|1p1/2〉. (7)

(The sign of the off-diagonal matrix element is not determined,
but experiment depends only on its square.) In the harmonic
oscillator (HO) model for the radial wave functions, the core
term cancels and the E0 matrix element is given by

〈0+
1 |r2|0+

2 〉 = 11
2 b2 − 9

2b2 = b2, (8)

where b2 = �

mω
. With �ω=45A−1/3−25A−2/3, b2 =4.71 fm2.

Taking into account the finite charge size and the relativistic
contributions [18] for the protons and neutrons, the charge ma-
trix element for the E0 transition is 〈0+

1 |r2|0+
2 〉ch = 5.32 fm2

(the increase is mainly due to the spin-orbit contribution). This
is much larger than the experimental value of 1.70(3) [19]. This
discrepancy was noted in the experimental lifetime paper [17]
where they used α = 0.80 and β = 0.60.

This E0 matrix element is closely connected to the isomer
shift between the 1/2− ground state and 9/2+ excited state of
89Y that has been measured to be δ〈r2〉ch = 0.84(8) fm2 [20].
In the single-particle model the isomer shift is given by

δ〈r2〉 = 〈C ′
b,0g9/2|r2|C ′

b,0g9/2〉 − 〈C ′
a,1p1/2|r2|C ′

a,1p1/2〉
= 〈C ′

b|r2|C ′
b〉 − 〈C ′

a|r2|C ′
a〉

+ 〈0g9/2|r2|0g9/2〉 − 〈1p1/2|r2|1p1/2〉, (9)

where C ′ represents the 88Sr closed-shell configuration for 89Y.
The orbital configurations for C and C ′ are the same, but the
self-consistent EDF solutions for 90Zr and 89Y, respectively,
are different. With HO radial wave functions the core terms
cancel, and the value for the difference in charge radii is given
by Eq. (8). Together with the spin-orbit contribution this gives
δ〈r2〉ch = 5.31 fm2. Thus, in the limit of maximal mixing for
90Zr, E0 matrix element and 89Y isomer shift are the same in
the HO model and are both are a factor of three to four larger
than experimental results.

Next we replace the HO radial wave functions with those
obtained from self-consistent EDF calculations carried out
with the Skyrme form for the functional. We start with the
Skyrme parameter set Skx [21]. The EDF results obtained for a
closed-shell configuration for 88Sr plus one proton in the 1p1/2

orbital for the 1/2− ground state and one proton in the 0g9/2

orbital for the 9/2+ excited state of 89Y are given in Table I.
The resulting isomer shift of the charge radii is now in much
better agreement with experimental results. The difference
in the charge radii of the valence orbitals 〈0g9/2|r2|0g9/2〉 −
〈1p1/2|r2|1p1/2〉 = 4.81 fm2, is slightly reduced from the HO
model value of 5.31 fm2, but the isomer shift (the observable)
is reduced to 0.82 fm2 due to a cancellation coming from
the 〈C ′

b|r2|C ′
b〉 − 〈C ′

a|r2|C ′
a〉 term in Eq. (9). This is due to a

self-consistent rearrangement of all protons as a response to the
added density of the valence proton. Qualitatively, this is due
to the interior density for the 1p orbital that forces the proton
density to be pushed out in order to achieve self-consistent
saturation for the interior density. From Eq. (9), the total isomer
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TABLE I. Matrix elements in units of fm2. For 89Y we give δ〈r2〉ch, and for the others we give |〈0+
f |r2|0+

1 〉|ch, where f is given in the
second column. The spin-orbit contribution given in column 5 is included in the other theory results. Results are given for the single-particle
(SP), two-level (TL), and configuration interaction (CI) models discussed in the text. For the two state mixing 58Ni the matrix elements are
added in quadrature.

f exp Model Spin EDF valence EDF valence plus core Ratios

orbit (Skx) (Skx) (s3)
a b c d a/b a/c a/d

89Y 0.84(8) [20] SP 0.61 4.81 0.82 0.34 0.17 1.02 2.47
CI 0.51 4.54 0.97 0.60 0.19 0.9 1.5

90Zr 2 1.70(3) [19] TL 0.61 4.71 0.71 0.36 2.4 5.2
CI 0.53 4.48 0.90 0.57 0.4 1.9 3.0

206Pb 2 1.72(6) [19] CI −0.04 −0.04 0.66 1.43 43 2.6 1.2
68Ni 2 1.41(3) [23] CI 0.43 0.43 1.06 0.74 3.3 1.3 1.9
58Ni 2 0.054(14) [19] CI 0.33 0.30 1.47 1.80

3 5.5(10) [24] CI −0.08 1.01 1.69 2.62
2 + 3 5.5(10) [24] CI 1.05 2.23 3.18 5.2 2.5 1.7

32S 3 2.0(3) [19] CI −0.04 0.11 0.74 1.06 18 2.7 1.9
26Mg 2 3.5(12) [24] CI 0.16 0.26 0.93 1.11 13 3.8 3.2
26Mg 3 3.8(10) [24] CI 0.00 0.61 1.40 1.79 6.2 2.7 2.1

shift can be written as a sum of three terms, the change in the
core radius, the difference in the valence point proton radii,
and the spin-obit contribution from the change in the valence
orbitals: δ〈r2〉 = −3.99 + 4.20 + 0.61 = 0.82 fm2.

For the 90Zr E0 transition we carried out EDF calculations
for the configurations of Eq. (2) and then used these in
Eq. (7) for the E0 matrix element. The response of the core to
two valence protons is approximately two times that for one
valence proton; hence, the connection between the core terms
in Eqs. (7) and (9) is

〈Cb|r2|Cb〉 − 〈Ca|r2|Ca〉 = 2(〈C ′
b|r2|C ′

b〉 − 〈C ′
a|r2|C ′

a〉).
(10)

In analogy with the isomer shift, the E0 matrix element can be
written as a sum of three terms: 〈0+

1 |r2|0+
2 〉 = −4.00 + 4.10 +

0.61 = 0.71 fm2. This is reduced compared to HO due to the
change in the core radius. The results are slightly different from
those of the isomer shift due to the small mass dependence of
the valence radii in the EDF calculation.

Application for configuration-interaction models. The final
step is to use EDF together with the orbital occupations from
large-basis CI calculations. There will be many configurations
analogous to those of Eq. (2). For a given pair of eigenstates
|1〉 and |2〉, one can calculate the diagonal occupations for
protons (q = p) and neutrons (q = n) for orbitals k,

Oq1k = 〈1|[a+
qk ⊗ ãqk]λ=0|1〉 (11)

and

Oq2k = 〈2|[a+
qk ⊗ ãqk]λ=0|2〉, (12)

as well as the off-diagonal occupation change

O ′
q12k = 〈1|[a+

qk ⊗ ãqk]λ=0|2〉. (13)

(The sum over k for O ′
q12k is zero.) To use these in EDF

calculations we take the average of Oq1k and Oq2k and then

add and subtract the one-half of the off-diagonal term to make
two derived sets of occupations a and b:

Oqak = 1
2 [Oq1k + Oq2k − O ′

q12k] (14)

and

Oqbk = 1
2 [Oq1k + Oq2k + O ′

q12k]. (15)

These, together with the (2j + 1) occupations of the filled
orbitals, are used in Eq. (3) to construct the densities for a
and b. The difference of the two densities ρpb(r) − ρpa(r)
gives the proton radial transition density for the E0 transition.
In the HO limit the diagonal terms cancel and the transition
density only comes from the off-diagonal term determined
by O ′. When these constrained densities are used in EDF
calculations, the core response is taken into account by the
change in the diagonal terms induced by O ′.

With this procedure we reproduce the EDF result discussed
above for 90Zr. We propose to use this method for other E0
transitions that can be calculated within the CI method. Here
we use these results for E0 transitions that connect to the 0+
ground state. But the method is general and can be applied to
any Jπ and to transitions between excited states.

For 89Y and 90Zr we use the j4 model space for the
(0f5/2,1p3/2,1p1/2,0g9/2) set of orbitals. The wave functions
are obtained with the jj44pna Hamiltonian [22]. We calculate
the CI occupations for the two states of interest, Oq1k and Oq2k ,
and use these to constrain the orbital occupations for the EDF
calculation as discussed above. The j4 results for 89Y given in
Table I are similar to those of the single-particle model. For the
90Zr E0 transition the off-diagonal occupations for protons
O ′

p12k [q = p in Eq. (13)] are 0.946 (0g9/2), −0.747 (1p1/2),
−0.150 (1p3/2), and −0.049 (0f5/2).

We use these constrained orbital occupations for the EDF
calculations to obtain self-consistent radial densities, ρ(r)qa

and ρ(r)qb. The proton transition density is given by

ρp12(r) = ρpb(r) − ρpa(r). (16)
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FIG. 1. Calculated proton transition densities for 90Zr obtained
with the Skx energy-density functional. Contributions are shown for
the three terms in Eq. (17).

We can calculate the transition density coming just from
the valence protons density, ρvp(r). If we subtract this from
the total proton transition density, ρp12(r), we have the
contribution coming from the change of the proton density
induced by the change in the valence proton density, ρpvp(r).
Thus the total can be understood as a sum of two terms:

ρp12(r) = ρvp(r) + ρpvp(r). (17)

These densities for 90Zr are shown in Fig. 1. If all Oq12k are
zero then the E0 matrix element is zero.

Next we apply our method to a variety of
other cases across the nuclear chart: 206Pb in the
(0h9/2,1f7/2,1f5/2,2p3/2,1p1/2,0i13/2) model space for neu-
trons with the modified Kuo-Herling Hamiltonian [25]; 68Ni
in the j4 model space for neutrons with the jj44pna
Hamiltonian [22]; 58Ni in the (1p,0f ) model space for protons
and neutrons with the GPFX1A Hamiltonian [26]; and 26Mg
in the (1s,0d) model space for protons and neutrons with the
USDB Hamiltonian [27]. The calculations were carried out
with the code NUSHELLX [28]. For all cases considered here, the
calculated energy of the excited state is within 200 keV of the
experimental value. The results are given in Table I. For 206Pb
and 68Ni only neutrons are active and the contribution from
the model space is zero (except for the spin-orbit contribution
coming from the neutrons). The proton contribution for the
E0 matrix element comes entirely from the polarization of
the protons from the valence neutrons [ρ(r)cpvn]. Our results
for 206Pb are similar to the two-level model of Zamick [16];
the dominant orbitals in the transition are 1f5/2 and 2p1/2.
The E0 transition strength is related to the isotope shifts of
204,207Pb relative to 208Pb related to these two orbitals. The
density dependence of the interaction that gives rise to the
core polarization is important [29], and in our approach this is
provided by the Skyrme interaction.

10
−5

10
−4

10
−3

10
−2

0 1 2 3

|F
(q

)|
2

q (fm−1)

26Mg 0+
2

0+
3

FIG. 2. Calculated form factors for 26Mg. The dashed lines are for
the valence space contribution only. The solid lines take into account
the valence space and the core polarization.

Finally we consider 26Mg, 32S, and 58Ni. For 26Mg and 58Ni
there is additional information on the transition form factors
from inelastic electron scattering [24]. 32S provides a test of
our model for a nucleus with equal number or protons and
neutrons. The E0 matrix elements are zero in the sd and pf
model spaces with harmonic-oscillator radial wave-function
approximation since all of the valence 〈r2〉 matrix elements
are the same. But the valence proton transition densities are
not zero and this provides the mechanism for proton core
polarization involving both valence protons (pvp) and valence
neutrons (pvn):

ρp12(r) = ρvp(r) + ρpvp(r) + ρpvn(r). (18)

In Ref. [24] the strength and shape of the form factors were
explained by adding an arbitrary small amount of 0d5/2 →
1d5/2 and 0f7/2 → 1f7/2 to the off-diagonal CI transition
density for 26Mg and 58Ni, respectively. These are part of
the giant monopole transition densities. Our core polarization
model can be represented as an addition of the giant monopole
transition density with an amplitude that is determined by the
Skyrme parameters. We can calculate the form factor F (q)
coming from the j0(qr) integral of Eq. (16). The results for
|F (q)|2 are shown in Fig. 2. The valence contribution is in
agreement with those given in Ref. [24]. The shape for the
total form factor is in reasonable agreement with the data given
in Ref. [24]; however, its magnitude around q = 0.6 fm−1 is
two orders of magnitude larger than the valence contribution,
but it is still about an order of magnitude smaller than the
data at low q, reflecting the fact that the E0 matrix elements
are about a factor of three smaller than experiment (Table I).
We will discuss the possible reason for this disagreement
below.
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The calculated E0 matrix element for the 0+
2 state at

2.942 MeV in 58Ni is much larger than the experimental value.
Also the calculated E2 matrix element for the 0+

1 → 2+
2 of

13.0 e fm2 is much larger than the experimental value of 1.4(5)
e fm2 for the 2+

2 state at 2.775 MeV. The minimal resolution of
both of these problems requires a remixing of the theoretical
0+

2 and 2+
2 states with the 0+

3 and 2+
3 states that lie about 0.4

MeV higher. After remixing to give the small E0 to the 0+
2

state, the value for the 0+
3 state is 3.2 fm2 with EDF(s3), about

half of the experimental value. It remains to be seen how (or
if) the GPFX1A Hamiltonian can be modified to explain these
small matrix elements.

We have explored the sensitively to the Skyrme parameters
by using the 18 parameter sets that go with Table I Ref. [30].
Of these 18, the KDE0v1 (s3) set gives the largest difference
for the r2 matrix elements compared to Skx (the dependence
on m∗

n/m is small). Part of this is correlated with the
nuclear matter incompressibility that is larger for Skx (Km =
270 MeV) compared to s3 (Km = 220 MeV). For 206Pb s3
gives a much larger core polarization than the other sets given
in Table I of Ref. [30]. This is correlated with the t2 parameter
that is much larger in s3 compared to the others. The full
dependence on the Skyrme parameters remains to be explored
and perhaps exploited as an additional constraint.

The core polarization is caused by the change in the nodal
structure of the radial wave functions for the orbitals that
participate in the valence transition. There is a connection
with the isomer and isotope shifts in the nuclear charge
radii. EDF calculations can only account for part of the
observed isotope shift. For example, recent results for
49,51,52Ca [31] show a rapid increase in the r2 charge radius
beyond N = 28 for which only about half is accounted for
by the EDF calculations [31,32]. Some of the isotope shift
anomalies can be accounted for by quadrupole zero-point
motion corrections. This correction arises from second-order
configuration admixtures of the type [2+

valence ⊗ 2+
collective]J=0+

.
One may need an expansion of the model space to include
octupole correlations to account for the increase in radii
beyond N = 28. These second-order corrections will also be

important for the E0 matrix elements, and the next step for
future work will be to calculate their contribution.

Conclusions. In conclusion, we have presented a micro-
scopic model for electric monopole (E0) transition matrix
elements that can be used with orbital occupations obtained
from CI calculations. The most important part of the CI
Hamiltonian is the pairing part (J = 0, T = 1) that provides
the mixing required for the nonzero off-diagonal orbital
occupations. These occupations are used as constraints for
an EDF calculation that is used to obtain a self-consistent
transition density. We discussed the connections between E0
matrix elements and isomer and isotope shifts of the charge
radius. We also showed that the electromagnetic spin-orbit
correction to the charge density is important in some cases. For
the nuclei considered here, this model accounts for a large part
of the data over a wide region of the nuclear chart. The ratio of
the experimental matrix element divided by the conventional
valence EDF matrix element is shown in Table I by the ratio
a/b; it ranges from 0.2 to 43. This a greatly improved with the
valance-plus-core model where the ratios a/c (Skx) and a/d

(s3) are reduced to the range 1 to 5. About half of this comes
from the uncertainties in Skyme EDF functional. Overall the
experimental matrix elements are about a factor of two larger
than theory, indicating the need for an effective charge that
can come from a second-order correction. The model can
be applied to E0 transitions between any Jπ states. It also
accounts for the shape of the observed electron scattering
form factors. As demonstrated for the case of 58Ni, comparison
of experiment to our model results provide tests of the wave
functions and Hamiltonians used for the CI method. The results
depend on the Skyrme parameters used for energy-density
functional and might be used to provide new constraints for
these parameters.
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