178 research outputs found

    The environmental impact of fertilizer embodied in a wheat-to-bread supply chain

    Get PDF
    Food production and consumption cause approximately one-third of total greenhouse gas emissions, and therefore delivering food security challenges not only the capacity of our agricultural system, but also its environmental sustainability. Knowing where and at what level environmental impacts occur within particular food supply chains is necessary if farmers, agri-food industries and consumers are to share responsibility to mitigate these impacts. Here we present an analysis of a complete supply chain for a staple of the global diet, a loaf of bread. We obtained primary data for all the processes involved in the farming, production and transport systems that lead to the manufacture of a particular brand of 800 g loaf. The data were analysed using an advanced life cycle assessment (LCA) tool, yielding metrics of environmental impact, including greenhouse gas emissions. We show that more than half of the environmental impact of producing the loaf of bread arises directly from wheat cultivation, with the use of ammonium nitrate fertilizer alone accounting for around 40%. These findings reveal the dependency of bread production on the unsustainable use of fertilizer and illustrate the detail needed if the actors in the supply chain are to assume shared responsibility for achieving sustainable food production

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Subregional 6-[18F]fluoro-ʟ-m-tyrosine Uptake in the Striatum in Parkinson's Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In idiopathic Parkinson's disease (PD) the clinical features are heterogeneous and include different predominant symptoms. The aim of the present study was to determine the relationship between subregional aromatic l-amino acid decarboxylase (AADC) activity in the striatum and the cardinal motor symptoms of PD using high-resolution positron emission tomography (PET) with an AADC tracer, 6-[<sup>18</sup>F]fluoro-ʟ-<it>m</it>-tyrosine (FMT).</p> <p>Methods</p> <p>We assessed 101 patients with PD and 19 healthy volunteers. PD was diagnosed based on the UK Brain Bank criteria by two experts on movement disorders. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS). FMT uptake in the subregions of the striatum was analyzed using semi-automated software for region-of-interest demarcation on co-registered magnetic resonance images.</p> <p>Results</p> <p>In all PD patients, FMT uptake was decreased in the posterior putamen regardless of predominant motor symptoms and disease duration. Smaller uptake values were found in the putamen contralateral to the side with more affected limbs. The severity of bradykinesia, rigidity, and axial symptoms was correlated with the decrease of FMT uptake in the putamen, particularly in the anterior part. No significant correlation was observed between tremors and FMT uptake.</p> <p>Conclusions</p> <p>Decrease of FMT uptake in the posterior putamen appears to be most sensitive in mild PD and uptake in the anterior putamen may reflect the severity of main motor symptoms, except for tremor.</p

    An agenda for integrated system-wide interdisciplinary agri-food research

    Get PDF
    © 2017 The Author(s)This paper outlines the development of an integrated interdisciplinary approach to agri-food research, designed to address the ‘grand challenge’ of global food security. Rather than meeting this challenge by working in separate domains or via single-disciplinary perspectives, we chart the development of a system-wide approach to the food supply chain. In this approach, social and environmental questions are simultaneously addressed. Firstly, we provide a holistic model of the agri-food system, which depicts the processes involved, the principal inputs and outputs, the actors and the external influences, emphasising the system’s interactions, feedbacks and complexities. Secondly, we show how this model necessitates a research programme that includes the study of land-use, crop production and protection, food processing, storage and distribution, retailing and consumption, nutrition and public health. Acknowledging the methodological and epistemological challenges involved in developing this approach, we propose two specific ways forward. Firstly, we propose a method for analysing and modelling agri-food systems in their totality, which enables the complexity to be reduced to essential components of the whole system to allow tractable quantitative analysis using LCA and related methods. This initial analysis allows for more detailed quantification of total system resource efficiency, environmental impact and waste. Secondly, we propose a method to analyse the ethical, legal and political tensions that characterise such systems via the use of deliberative fora. We conclude by proposing an agenda for agri-food research which combines these two approaches into a rational programme for identifying, testing and implementing the new agri-technologies and agri-food policies, advocating the critical application of nexus thinking to meet the global food security challenge

    Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity.

    Get PDF
    Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy

    Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells

    Get PDF
    The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures
    corecore