127 research outputs found

    Localization with multicomponent seismic array

    Get PDF
    International audienceSeismo-volcano source localization is essential to improve our understanding of volcano systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the back-azimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. In order to determine the source location parameters (back-azimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This communication discusses a high resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). After introducing the 3C MUSIC processing, we evaluate the robustness of the location method on a full wavefield 3D synthetic dataset generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the back-azimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C-MUSIC to two seismic events recorded in 2009. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicenter and now an estimate for the depth

    Seismo-volcano source localization with triaxial broad-band seismic array

    Get PDF
    International audienceSeismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3CMUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth

    On the Challenges of Deploying Privacy-Preserving Synthetic Data in the Enterprise

    Full text link
    Generative AI technologies are gaining unprecedented popularity, causing a mix of excitement and apprehension through their remarkable capabilities. In this paper, we study the challenges associated with deploying synthetic data, a subfield of Generative AI. Our focus centers on enterprise deployment, with an emphasis on privacy concerns caused by the vast amount of personal and highly sensitive data. We identify 40+ challenges and systematize them into five main groups -- i) generation, ii) infrastructure & architecture, iii) governance, iv) compliance & regulation, and v) adoption. Additionally, we discuss a strategic and systematic approach that enterprises can employ to effectively address the challenges and achieve their goals by establishing trust in the implemented solutions.Comment: Accepted to the 1st Workshop on Challenges in Deployable Generative AI, part of ICML 202

    Source geometry from exceptionally high resolution long period event observations at Mt Etna during the 2008 eruption

    Get PDF
    During the second half of June, 2008, 50 broadband seismic stations were deployed on Mt Etna volcano in close proximity to the summit, allowing us to observe seismic activity with exceptionally high resolution. 129 long period events (LP) with dominant frequencies ranging between 0.3 and 1.2 Hz, were extracted from this dataset. These events form two families of similar waveforms with different temporal distributions. Event locations are performed by cross-correlating signals for all pairs of stations in a two-step scheme. In the first step, the absolute location of the centre of the clusters was found. In the second step, all events are located using this position. The hypocentres are found at shallow depths (20 to 700 m deep) below the summit craters. The very high location resolution allows us to detect the temporal migration of the events along a dike-like structure and 2 pipe shaped bodies, yielding an unprecedented view of some elements of the shallow plumbing system at Mount Etna. These events do not seem to be a direct indicator of the ongoing lava flow or magma upwelling

    Tremor-rich shallow dyke formation followed by silent magma flow at Bárdarbunga in Iceland

    Get PDF
    The Bárdarbunga eruption in Iceland in 2014 and 2015 produced about 1.6 km3 of lava. Magma propagated away from Bárdarbunga to a distance of 48 km in the sub-surface beneath Vatnajökull glacier, emerging a few kilometres beyond the glacier's northern rim. A puzzling observation is the lack of shallow (<3 km deep), high-frequency earthquakes associated with shallow dyke formation near the subaerial and subglacial eruptive sites, suggesting that near-surface dyke formation is seismically quiet. However, seismic array observations and seismic full wavefield simulations reveal the presence and nature of shallow, pre-eruptive, long-duration seismic tremor activity. Here we use analyses of seismic data to constrain the relationships between seismicity, tremor, dyke propagation and magma flow during the Bárðarbunga eruption. We show that although tremor is usually associated with magma flow in volcanic settings, pre-eruptive tremor at Bárdarbunga was probably caused by swarms of microseismic events during dyke formation, and hence is directly associated with fracturing of the upper 2–3 km of the crust. Subsequent magma flow in the newly formed shallow dyke was seismically silent, with almost a complete absence of seismicity or tremor. Hence, we suggest that the transition from temporarily isolated, large, deep earthquakes to many smaller, shallower, temporally overlapping earthquakes (< magnitude 2) that appear as continuous tremor announces the arrival of a dyke opening in the shallow crust, forming a pathway for silent magma flow to the Earth's surface

    LANDWISE: impacts of land use and management on soil properties and flood risk. Field survey

    Get PDF
    The aim of the LANDWISE project is to evaluate the impact of land use/management related natural flood management measures for lowland catchment

    LANDWISE field surveys: How land use and soil management affects soil properties, with implications for flood risk

    Get PDF
    Summary of findings so far… • Land use and management can significantly enhance soil physical and hydrological/hydraulic properties and flood mitigation potential • Soil management important improve near surface soil properties and reduce preferential flow pathways to increase infiltration of rainfall into soil and reduce runoff. • Increasing organic matter content increases soil porosity , creating more soil water storage and potential to mitigate flooding. • Fields with ‘low’ starting organic matter content can greatly improve soil porosity therefore soil water storage with relatively modest organic matter increases • Organic additions are not the only way to improve soil structure, innovative arable management practices (e.g. controlled traffic and min till) also improve soil structure, increase saturated hydraulic conductivity and therefore NFM potential. • Mature broadleaf woodland has the highest organic matter content, soil porosity, saturated hydraulic conductivity and NFM potential relative to arable and grassland. • Further analysis and quantification ongoing

    MicroRNA inhibition using antimiRs in acute human brain tissue sections

    Get PDF
    Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 μmol L-1 and 90% reduction at 3 μmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain
    corecore