25 research outputs found
Recommended from our members
Effects of degree and timing of social housing on reversal learning and response to novel objects in dairy calves
Rodents and primates deprived of early social contact exhibit deficits in learning and behavioural
flexibility. They often also exhibit apparent signs of elevated anxiety, although the relationship between these effects has not been studied. To investigate whether dairy calves are similarly affected, we first compared calves housed in standard individual pens
(n = 7) to those housed in a dynamic group with access to their mothers (n = 8). All calves learned to approach the correct stimulus in a visual discrimination task. Only one individually housed calf was able to re-learn the task when the stimuli were reversed, compared to all but one calf from the group. A second experiment investigated whether this effect might be explained by anxiety in individually housed animals interfering with their learning, and tested varying degrees of social contact in addition to the complex group: pair housing beginning early (approximately 6 days old) and late (6 weeks old). Again, fewer individually reared calves learned the reversal task (2 of 10 or 20%) compared to early paired and grouped calves (16 of 21 or 76% of calves). Late paired calves had intermediate success. Individually housed calves were slower to touch novel objects, but the magnitude of the fear response did not correlate with reversal performance. We conclude that individually housed calves have learning deficits, but these deficits were not likely associated with increased
anxiety
Study protocol for a group randomized controlled trial of a classroom-based intervention aimed at preventing early risk factors for drug abuse: integrating effectiveness and implementation research
<p>Abstract</p> <p>Background</p> <p>While a number of preventive interventions delivered within schools have shown both short-term and long-term impact in epidemiologically based randomized field trials, programs are not often sustained with high-quality implementation over time. This study was designed to support two purposes. The first purpose was to test the effectiveness of a universal classroom-based intervention, the Whole Day First Grade Program (WD), aimed at two early antecedents to drug abuse and other problem behaviors, namely, aggressive, disruptive behavior and poor academic achievement. The second purpose--the focus of this paper--was to examine the utility of a multilevel structure to support high levels of implementation during the effectiveness trial, to sustain WD practices across additional years, and to train additional teachers in WD practices.</p> <p>Methods</p> <p>The WD intervention integrated three components, each previously tested separately: classroom behavior management; instruction, specifically reading; and family-classroom partnerships around behavior and learning. Teachers and students in 12 schools were randomly assigned to receive either the WD intervention or the standard first-grade program of the school system (SC). Three consecutive cohorts of first graders were randomized within schools to WD or SC classrooms and followed through the end of third grade to test the effectiveness of the WD intervention. Teacher practices were assessed over three years to examine the utility of the multilevel structure to support sustainability and scaling-up.</p> <p>Discussion</p> <p>The design employed in this trial appears to have considerable utility to provide data on WD effectiveness and to inform the field with regard to structures required to move evidence-based programs into practice.</p> <p>Trial Registration</p> <p><b>Clinical Trials Registration Number</b>: NCT00257088</p
Kinetics of tidal resuspension of microbiota: Testing the effects of sediment cohesiveness and bioturbation using flume experiments
Resuspension of the top few sediment layers of tidal mud flats is known to enhance planktonic biomass of microbiota (benthic diatoms and bacteria). This process is mainly controlled by tidal shear stress and cohesiveness of mud, and is also influenced by bioturbation activities. Laboratory experiments in a race track flume were performed to test the interactive effects of these factors on both the critical entrainment and resuspension kinetics of microbiota from silt-clay sediments from the Marennes-Oleron Bay, France. The marine snail Hydrobia ulvae was used to mimic surface bioturbation activities. As expected, the kinetics of microbial resuspension versus shear stress were largely controlled by the cohesiveness of silt-clay sediments. However, our results indicate that the effect of surface tracking by H. ulvae on microbial resuspension was clearly dependent on the interaction between sediment cohesiveness and shear velocity. Evidence was also found that microphytobenthos and bacteria are not simultaneously resuspended from silt-clay bioturbated sediments. This supports the theory that diatoms within the easily eroded mucus matrix behave actively and bacteria adhering to fine silt particles eroded at higher critical shear velocities behave passively
Impairment of the bacterial biofilm stability by triclosan
The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects.Publisher PDFPeer reviewe