2,037 research outputs found

    Overcoming the barriers to teaching teamwork to undergraduates in STEM.

    Get PDF
    There is widespread recognition that undergraduate students in the life sciences must learn how to work in teams. However, instructors who wish to incorporate teamwork into their classrooms rarely have formal training in how to teach teamwork. This is further complicated by the application of synonymous and often ambiguous terminology regarding teamwork that is found in literature spread among many different disciplines. There are significant barriers for instructors wishing to identify and implement best practices. We synthesize key concepts in teamwork by considering the knowledge, skills, and attitudes (KSAs) necessary for success, the pedagogies and curricula for teaching those KSAs, and the instruments available for evaluating and assessing success. There are only a limited number of studies on teamwork in higher education that present an intervention with a control group and a formal evaluation or assessment. Moreover, these studies are almost exclusively outside STEM disciplines, raising questions about their extensibility. We conclude by considering how to build an evidence base for instruction that will empower students with the KSAs necessary for participating in a lifetime of equitable and inclusive teamwork

    Structural plasticity of the living kinetochore

    Get PDF
    The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells

    Body image, body dissatisfaction and weight status in south asian children: a cross-sectional study

    Get PDF
    Background Childhood obesity is a continuing problem in the UK and South Asian children represent a group that are particularly vulnerable to its health consequences. The relationship between body dissatisfaction and obesity is well documented in older children and adults, but is less clear in young children, particularly South Asians. A better understanding of this relationship in young South Asian children will inform the design and delivery of obesity intervention programmes. The aim of this study is to describe body image size perception and dissatisfaction, and their relationship to weight status in primary school aged UK South Asian children. Methods Objective measures of height and weight were undertaken on 574 predominantly South Asian children aged 5-7 (296 boys and 278 girls). BMI z-scores, and weight status (underweight, healthy weight, overweight or obese) were calculated based on the UK 1990 BMI reference charts. Figure rating scales were used to assess perceived body image size (asking children to identify their perceived body size) and dissatisfaction (difference between perceived current and ideal body size). The relationship between these and weight status were examined using multivariate analyses. Results Perceived body image size was positively associated with weight status (partial regression coefficient for overweight/obese vs. non-overweight/obese was 0.63 (95% CI 0.26-0.99) and for BMI z-score was 0.21 (95% CI 0.10-0.31), adjusted for sex, age and ethnicity). Body dissatisfaction was also associated with weight status, with overweight and obese children more likely to select thinner ideal body size than healthy weight children (adjusted partial regression coefficient for overweight/obese vs. non-overweight/obese was 1.47 (95% CI 0.99-1.96) and for BMI z-score was 0.54 (95% CI 0.40-0.67)). Conclusions Awareness of body image size and increasing body dissatisfaction with higher weight status is established at a young age in this population. This needs to be considered when designing interventions to reduce obesity in young children, in terms of both benefits and harms

    Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+

    Full text link
    A high statistics sample of photo-produced charm from the FOCUS(E831) experiment at Fermilab has been used to search for direct CP violation in the decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%, A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/- 1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the second are systematic. We also measure the relative branching ratios: \Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%, \Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and \Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure

    A High Statistics Measurement of the Lambdac+ Lifetime

    Full text link
    A high statistics measurement of the Lambdac+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis technique with particular attention to the determination of the systematic uncertainty. The measured value of 204.6 +/- 3.4 (stat.) +/- 2.5 (syst.) fs from 8034 +/- 122 Lambdac -> pKpi decays represents a significant improvement over the present world average.Comment: Submitted to Physical Review Letter

    The Target Silicon Detector for the FOCUS Spectrometer

    Full text link
    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.Comment: 18 pages, 14 figure

    Measurement of the relative branching ratio BR(\Xi_c^+ \to p^+ K^-\pi^+)\BR(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)

    Full text link
    We report the observation of the Cabibbo suppressed decay \Xi_c^+ \to p K^-\pi^+ using data collected with the FOCUS spectrometer during the 1996--97 Fermilab fixed target run. We find a \Xi_c^+ signal peak of 202\pm35 events. We have measured the relative branching ratios BR(\Xi^+_c\to p K^-\pi^+)/BR(\Xi^+_c\to\Xi^-\pi^+\pi^+)= 0.234 \pm 0.047 \pm 0.022 and BR(\Xi^+_c\to p \bar{K}^*(892)^0)/BR(\Xi^+_c\to p K^-\pi^+)= 0.54 \pm 0.09 \pm 0.05 .Comment: 9 pages, 4 figure

    Study of Hadronic Five-Body Decays of Charmed Mesons

    Get PDF
    We study the decay of D+ and Ds+ mesons into charged five body final states, and report the discovery of the decay mode D+ -> K+K-Pi+Pi+Pi-, as well as measurements of the decay modes D+ -> K-Pi+Pi+Pi+Pi-, Ds+ -> K+K-Pi+Pi+Pi-, Ds+ -> PhiPi+Pi+Pi- and D+/Ds+ -> Pi+Pi+Pi+Pi-Pi-. An analysis of the resonant substructure is also included, with evidence suggesting that both decays proceed primarily through an a1 vector resonance.Comment: 11 pages, 3 figure

    A Measurement of the Ds+ Lifetime

    Full text link
    A high statistics measurement of the Ds+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis of the two decay modes, Ds+ -> phi(1020)pi+ and Ds+ -> \bar{K}*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/- 5.5 (stat.) +/- 5.1 (syst.) fs using 8961 +/- 105 Ds+ -> phi(1020)pi+ and 4680 +/- 90 Ds+ -> \bar{K}*(892)0K+ decays. This is a significant improvement over the present world average.Comment: 5 pages, 3 figures, 2 tables, submitted to PR
    • 

    corecore