1,788 research outputs found

    Understanding Paramagnetic Spin Correlations in the Spin-Liquid Pyrochlore Tb2Ti2O7

    Full text link
    Recent elastic and inelastic neutron scattering studies of the highly frustrated pyrochlore antiferromagnet Tb2Ti2O7 have shown some very intriguing features that cannot be modeled by the local classical Ising model, naively expected to describe this system at low temperatures. Using the random phase approximation to take into account fluctuations between the ground state doublet and the first excited doublet, we successfully describe the elastic neutron scattering pattern and dispersion relations in Tb2Ti2O7, semi-quantitatively consistent with experimental observations.Comment: revtex4, 4 pages, 1 Color+ 2 BW figure

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region

    Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Get PDF
    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The SEP stage architecture approach offers benefits beyond a single astrophysics mission. A variety of low-cost astrophysics missions could employ a standard SEP stage to achieve substantial science benefit. This paper describes the results of this study in detail, including trajectory analysis, spacecraft concept definition, description of telescope/instrument benefits, and application of the resulting SEP stage to other missions. In addition, the benefits of cooperative development and use of the SEP stage, in conjunction with a SEP flight demonstration mission currently in definition at NASA, are considered

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission

    The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare.

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota. A characteristic of atopic eczema (AE) is colonization by S. aureus, with exacerbations associated with an increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colonizing individual patients during AE disease flares is poorly understood. To examine the microevolution of S. aureus colonization, we deep sequenced S. aureus populations from nine children with moderate to severe AE and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus populations was observed in both AE patients and control participants, with all but one of the individuals carrying colonies belonging to a single sequence type. Phylogenetic analysis showed that disease flares were associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months. There was a significant difference in the genetic backgrounds of S. aureus colonizing AE cases versus controls (Fisher exact test, P = 0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus populations identified evidence of within-host selection in the AE patients, with AE variants being potentially selectively advantageous for intracellular persistence and treatment resistance.CPH was supported by Wellcome Trust (grant number 104241/z/14/z). MTGH, KAP, and KO were supported by the Scottish Infection Research Network and Chief Scientist Office through the Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). Bioinformatics and computational biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 097831/Z/11/Z). JP and MTGH were supported by Wellcome Trust grant 098051. AEM is supported by Biotechnology and Biological Sciences Research Council grant BB/M014088/1. SJB is supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (106865/Z/15/Z)

    Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    Get PDF
    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to ~13X increased photometric sensitivity and ~160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines

    The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

    Get PDF
    The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
    • …
    corecore