1,099 research outputs found

    Circular 13

    Get PDF

    Intake of products containing anthocyanins, flavanols, and flavanones, and cognitive function: A narrative review

    Get PDF
    The purpose of this review is to examine human research studies published within the past 6 years which evaluate the role of anthocyanin, flavanol, and flavanone consumption in cognitive function, and to discuss potential mechanisms of action underlying any observed benefits. Evidence to date suggests the consumption of flavonoid-rich foods, such as berries and cocoa, may have the potential to limit, or even reverse, age-related declines in cognition. Over the last 6 years, the flavonoid subgroups of anthocyanins, flavanols, and flavanones have been shown to be beneficial in terms of conferring neuroprotection. The mechanisms by which flavonoids positively modulate cognitive function are yet to be fully elucidated. Postulated mechanisms include both direct actions such as receptor activation, neurotrophin release and intracellular signaling pathway modulation, and indirect actions such as enhancement of cerebral blood flow. Further intervention studies conducted in diverse populations with sufficient sample sizes and long durations are required to examine the effect of consumption of flavonoid groups on clinically relevant cognitive outcomes. As populations continue to focus on adopting healthy aging strategies, dietary interventions with flavonoids remains a promising avenue for future research. However, many questions are still to be answered, including identifying appropriate dosage, timeframes for intake, as well as the best form of flavonoids, before definitive conclusions can be drawn about the extent to which their consumption can protect the aging brain

    Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands

    Full text link
    We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair mediated transport. When sub-gap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti) crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires

    SCHOOLING BEHAVIOUR OF SARDINE SARDINOPS SAGAX IN FALSE BAY, SOUTH AFRICA

    Get PDF
    The schooling behaviour of sardine Sardinops sagax in False Bay on the south coast of South Africa was studied in October 1995 using high-resolution sonar and a hull-mounted, echo-integration unit. School formation and disintegration were studied, and school shape, packing density, swimming behaviour and inter- and intra-school event rates were quantified. Mean fish density was 29.5 fish m-3 (SD 46 fish m-3), but it varied between schools by a factor of about 100 (from 2 to 233 fish m-3). Tracked schools moved at average speeds of 0.67–1.59 m s-3. Schools changed shape on average every 2.08 minutes, and underwent either splits or merges with other schools on average every 5 minutes. Relationships between the geometric dimensions and biomass of the schools were established.Afr. J. mar. Sci. 25: 185–19

    Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption

    Full text link
    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturisation. In particular, nanowires have been obtained from solution or vapour phase and have displayed high conductivity, or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive post-growth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimetre length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules

    Resolving the compact HII regions in N160A with HST

    Get PDF
    Using high-resolution imaging with the Hubble Space Telescope, we study the Large Magellanic Cloud HII region N160A and uncover several striking features of this complex massive star-forming site. The two compact high excitation HII blobs (HEBs) A1 and A2 are for the first time resolved and their stellar content and morphology is revealed. A1, being of higher excitation, is powered by a single massive star whose strong wind has created a surrounding bubble. A2 harbors several exciting stars enshrouded inside large quantities of dust. The whole N160A nebula is energized by three star clusters for which we obtain photometry and study their color-magnitude diagram. The HII region is particularly dusty, with extinction values reaching an A_v~2.5 mag in the visible, and it is separated from the molecular cloud by an outstanding ionization front. A previously detected infrared young stellar object is also accurately located with respect to the HII region.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy & Astrophysics. A version of the paper with higher quality images is available at http://wwwusr.obspm.fr/~heydari/projects/N16
    • …
    corecore