10 research outputs found

    Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum: a novel rhamnose-rich polysaccharide and teichoic acids

    Get PDF
    Abstract The capsular material from Lactobacillus plantarum IMB19, an isolate from fermented vegetables, has been analyzed and our results demonstrate that most of the coat of this bacterium consists of glycerol- and ribitol-type teichoic acids, further decorated with other substituents (α-glucose and alanine), and of a capsular polysaccharide (CPS) with a linear nonasaccharide repeating unit, rich in rhamnose, interconnected to the next via a phosphodiester bridge. Stimulation of immune cells with the total capsular material resulted in the enhancement of immunostimulatory (IFNγ, TNF-α, IL-6 and IL-12) or immuno-regulatory (IL-10) cytokines in an in vitro splenocyte culture system. The capsular polysaccharide, and not the teichoic acids mixture, was responsible for the IFNγ production. Indeed, a significant increase of IFNγ along with other inflammatory cytokines, and a dose response in IFNγ expression with an EC50 of 3.16 μM was found for CPS, disclosing that this polysaccharide is a potent immunostimulatory molecule

    Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis

    Get PDF
    Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid–binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction

    The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline

    No full text
    International audienceVaccines can be highly effective tools in combating antimicrobial resistance as they reduce infections caused by antibiotic-resistant bacteria and antibiotic consumption associated with disease. This Review looks at vaccine candidates that are in development against pathogens on the 2017 WHO bacterial priority pathogen list, in addition to Clostridioides difficile and Mycobacterium tuberculosis. There were 94 active preclinical vaccine candidates and 61 active development vaccine candidates. We classified the included pathogens into the following four groups: Group A consists of pathogens for which vaccines already exist-ie, Salmonella enterica serotype Typhi, Streptococcus pneumoniae, Haemophilus influenzae type b, and M tuberculosis. Group B consists of pathogens with vaccines in advanced clinical development-ie, extra-intestinal pathogenic Escherichia coli, Salmonella enterica serotype Paratyphi A, Neisseria gonorrhoeae, and C difficile. Group C consists of pathogens with vaccines in early phases of clinical development-ie, enterotoxigenic E coli, Klebsiella pneumoniae, non-typhoidal Salmonella, Shigella spp, and Campylobacter spp. Finally, group D includes pathogens with either no candidates in clinical development or low development feasibility-ie, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Helicobacter pylori, Enterococcus faecium, and Enterobacter spp. Vaccines are already important tools in reducing antimicrobial resistance and future development will provide further opportunities to optimise the use of vaccines against resistance

    Carbohydrate-based adjuvants

    Get PDF
    Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones

    Dissecting Lipopolysaccharide Composition and Structure by GC-MS and MALDI Spectrometry

    No full text
    : Lipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. They exert multiple functions, starting from conferring stability to the bacterial membrane to mediating the interaction of the microbe with the external environment. The composition and the structure of LPSs present tremendous diversity even within bacteria of the same species, and for this reason, the determination of the structure of these molecules is crucial because it can provide information on the motifs key for the virulence of a pathogen or that are associated to a bacterium of the commensal or beneficial microbiota. In addition, structural data disclose the effects triggered from a mutation or from the use of an antibiotic, or they can be used as tools to check the quality of adjuvants and/or medications, as vaccines, that make use of LPS.The structural study of LPSs is complex, and it can be achieved with the right combination of different techniques. In this frame, this chapter focuses on the two MS-based approaches, the gas chromatography-mass spectrometry (GC-MS) and the matrix-assisted laser desorption/ionization (MALDI)

    Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide

    No full text
    : Structural determination of carbohydrates is mostly performed by liquid-state NMR, and it is a demanding task because the NMR signals of these biomolecules explore a rather narrow range of chemical shifts, with the result that the resonances of each monosaccharide unit heavily overlap with those of others, thus muddling their punctual identification. However, the full attribution of the NMR chemical shifts brings great advantages: it discloses the nature of the constituents, the way they are interconnected, in some cases their absolute configuration, and it paves the way to other and more sophisticated analyses. The purpose of this review is to provide a practical guide into this challenging subject. It will drive through the strategy used to assign the NMR data, pinpointing the core information disclosed from each NMR experiment, and suggesting useful tricks for their interpretation, along with other resources pivotal during the study of these biomolecules

    Implementing New Approach Methodologies (NAMs) in food safety assessments: Strategic objectives and actions taken by the European Food Safety Authority

    Get PDF
    Background: New Approach Methodologies (NAMs) comprise in silico and in vitro methods applied as alternative to animal testing. Even though NAMs are already fully implemented as research tools, their use in regulatory risk assessments (RA) is limited currently. To promote the regulatory uptake/acceptance of NAMs, a paradigm shift in risk assessment approaches, and a proper dialogue between risk assessors and risk managers is needed. Scope and approach: Several reviews addressed the use of NAMs for chemical RA in generic terms, but without providing specific considerations on their use for food/feed safety assessments. Therefore, in this review, we give insights on the potential use of NAMs for regulatory purposes in the EU. We summarise relevant projects and activities on NAMs coordinated by the European Food Safety Authority (EFSA), which is the agency of the European Union that contributes to the safety of the European food and feed chain. The review informs on future developments on the use of NAMs in human health chemical RA, and touches on their use for the assessment of protein toxicity and allergenicity, as well as environmental risks. Main findings and conclusions: Reducing animal testing and filling some RA gaps via NAMs is almost a reality. Moreover, there is a growing body of evidence confirming that the inclusion of mechanistic information improves risk assessments. EFSA’s projects address the main challenge of using intermediate effects observed in non-animal models for safety assessments, especially those linked to adverse effects that are insufficiently covered or uncovered by animal apical endpoints.S

    Peptidoglycan from Akkermansia muciniphila MucT: chemical structure and immunostimulatory properties of muropeptides

    No full text
    Akkermansia muciniphila is an intestinal symbiont known to improve the gut barrier function in mice and humans. Various cell envelope components have been identified to play a critical role in the immune signaling of A. muciniphila, but the chemical composition and role of peptidoglycan (PG) remained elusive. Here, we isolated PG fragments from A. muciniphila MucT (ATCC BAA-835), analyzed their composition and evaluated their immune signaling capacity. Structurally, the PG of A. muciniphila was found to be noteworthy due of the presence of some nonacetylated glucosamine residues, which presumably stems from deacetylation of N-acetylglucosamine. Some of the N-acetylmuramic acid (MurNAc) subunits were O-acetylated. The immunological assays revealed that muropeptides released from the A. muciniphila PG could both activate the intracellular NOD1 and NOD2 receptors to a comparable extent as muropeptides from Escherichia coli BW25113. These data challenge the hypothesis that non-N-acetylattion of PG can be used as a NOD-1 evasion mechanism. Our results provide new insights into the diversity of cell envelope structures of key gut microbiota members and their role in steering host-microbiome interactions

    Peptidoglycan from Akkermansia muciniphila Muc(T) : chemical structure and immunostimulatory properties of muropeptides

    No full text
    Akkermansia muciniphila is an intestinal symbiont known to improve the gut barrier function in mice and humans. Various cell envelope components have been identified to play a critical role in the immune signaling of A. muciniphila, but the chemical composition and role of peptidoglycan (PG) remained elusive. Here, we isolated PG fragments from A. muciniphila Muc(T) (ATCC BAA-835), analyzed their composition and evaluated their immune signaling capacity. Structurally, the PG of A. muciniphila was found to be noteworthy due of the presence of some nonacetylated glucosamine residues, which presumably stems from deacetylation of N-acetylglucosamine. Some of the N-acetylmuramic acid (MurNAc) subunits were O-acetylated. The immunological assays revealed that muropeptides released from the A. muciniphila PG could both activate the intracellular NOD1 and NOD2 receptors to a comparable extent as muropeptides from Escherichia coli BW25113. These data challenge the hypothesis that non-N-acetylattion of PG can be used as a NOD-1 evasion mechanism. Our results provide new insights into the diversity of cell envelope structures of key gut microbiota members and their role in steering host-microbiome interactions.Peer reviewe

    Peptidoglycan from Akkermansia muciniphila MucT: chemical structure and immunostimulatory properties of muropeptides

    No full text
    Akkermansia muciniphila is an intestinal symbiont known to improve the gut barrier function in mice and humans. Various cell envelope components have been identified to play a critical role in the immune signaling of A. muciniphila, but the chemical composition and role of peptidoglycan (PG) remained elusive. Here, we isolated PG fragments from A. muciniphila MucT (ATCC BAA-835), analyzed their composition and evaluated their immune signaling capacity. Structurally, the PG of A. muciniphila was found to be noteworthy due of the presence of some nonacetylated glucosamine residues, which presumably stems from deacetylation of N-acetylglucosamine. Some of the N-acetylmuramic acid (MurNAc) subunits were O-acetylated. The immunological assays revealed that muropeptides released from the A. muciniphila PG could both activate the intracellular NOD1 and NOD2 receptors to a comparable extent as muropeptides from Escherichia coli BW25113. These data challenge the hypothesis that non-N-acetylattion of PG can be used as a NOD-1 evasion mechanism. Our results provide new insights into the diversity of cell envelope structures of key gut microbiota members and their role in steering host-microbiome interactions
    corecore