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Carbohydrate adjuvants are safe and biocompatible

compounds usable as sustained delivery systems and

stimulants of ongoing humoral and cellular immune

responses, being especially suitable for the develop-

ment of vaccines against intracellular pathogens where

alum is useless. The development of new adjuvants is

difficult and expensive, however, in the last two years,

seven new carbohydrate-based adjuvants have been

patented, also there are twelve ongoing clinical trials

of vaccines that contain carbohydrate-based adjuvants,

as well as numerous publications on their mechanism of

action and safety. More research is necessary to

improve the existent adjuvants and develop innovative

ones.

Introduction
Vaccination is a strategy to fight diseases that consists of the

induction of a specific pathogen-immune response by the

administrationofanattenuatedpathogenor its antigenswhich

leads to protective immunity against the pathogen over time.

These triggered defences against the target pathogen are: (1)

antibodies produced by type B lymphocytes that bind to the

specific exogenous molecule (humoral immunity); (2) the
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cytotoxic CD8+ type T lymphocytes that recognize and kill

infected cells or secrete antiviral cytokines (cellular immunity);

and (3) CD4+ T helper lymphocytes (Th) that produce cyto-

kines and supports B (usually Th2) and T lymphocytes (mostly

Th1) [1]. In this context, an immunological adjuvant is a

compound that enhances and modulates the capacity of an

antigen to generate an immune response by increasing the

response and lengthens the memory of the immune response.

Adjuvants make a great impact in public health enhancing

immune coverage and adding to vaccine development since

less intrinsic components from the pathogen are necessary [2].

The most used adjuvants are aluminium-based, and al-

though there are many types of adjuvant molecules few are

approved, due to the necessity to find the right quali/quanti-

tative match between the antigen and the adjuvant. It is

possible to select an adjuvant that stimulates a specific im-

mune pathway or combine different adjuvants. Carbohydrate

adjuvants can be delivery systems helping the uptake of the

antigen by the antigen-presenting cells like some plant

extracts [3]. They can be exogenous immunoactive microbial

compounds such as TLR4 agonist [4,5] or other sources like

chitosan [6]. Immunoactive carbohydrate adjuvants enhance

the immune response as agonists of the Toll-like receptors

(TLRs) [7–9], nucleotide-binding oligomerization domain-

containing protein 2 (NOD2) [8], C-type lectins (CLR)

[10,11] or the CD1d-dependent natural killer T (NKT) [12]

which then stimulates the production of cytokines [12,13]. In

addition, adjuvants can be both sustained delivery systems

and immune response enhancers, like poloxamer 407-chit-

osan system [14]. These signalling cascades end up generating

antigen-specific T- and B-cell responses which aluminium
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cannot produce [9], making them suitable for the develop-

ment of vaccine-formulations against intracellular pathogens

such as Chlamydia, Herpes Zoster, human immunodeficien-

cy virus (HIV), human papillomavirus (HPV) and hepatitis B

virus (HBV) [15] or other bacteria such as Group A and

B Streptococcus [16,17].

Advantages of the use of carbohydrates as adjuvants in-

clude their capacity to play crucial roles in the immune

system, as well as their safety and tolerability. Carbohydrates

are not accumulated in the body like the alum, because they

are easily metabolized and excreted, avoiding any negative

effects of excessive or prolonged immune activation time

because of the adjuvant [18]. In addition, carbohydrates have

shown to have less side effects than alum, such as the devel-

opment of allergies [19] and do not carry the negative public

concerns of aluminium adjuvants [20].

Carbohydrates are ubiquitous and present in all life

forms (including viruses), as they play a critical role in

energy production and as structural and protection mate-

rials. But, also glycans can act as virulence factors or be

involved in cellular recognition as antigens [21]. Never-

theless, the development of carbohydrate adjuvants is very

challenging especially as aluminium is cheap, and its

safety has already been established. Indeed, carbohydrate

chemistry can be recalcitrant making the manufacturing

scale-up complex and expensive; also, purification of nat-

ural carbohydrates is difficult, making hard to obtain ho-

mogeneous compounds.

This review intends to be an update on the current situa-

tion of carbohydrate adjuvants development by examining

the patents, clinical trials and publications from the last two

years.

Lipid A
The lipid A consists on a b-(1!6)-linked diglucosamine

backbone with different patterns of acylation at the amino

and hydroxyl (3 and 3’) functions and different levels of

phosphorylation. It is the immunostimulant part of the

lipopolysaccharide (LPS), the main component of the outer

membrane external leaflet of Gram-negative bacteria. The

lipid A stimulates the immune system by activation of the

TLR4/MD-2 complex that mediates gene expression and

pro-inflammatory cytokine secretion, working as exoge-

nous immunoactive compound from microbial source.

This activation is structure-dependent, determined by

the phosphorylation and acylation patterns, and it is dem-

onstrated that the phosphate is essential for the homodi-

merization of the TLR4/MD-2 complexes [22]. The bis-

phosphorylated hexa-acylated lipid A specie with a 4 + 2

distribution of the acyl chains (E. coli like) (Fig. 1) is the

most toxic, its recognition by TLR4 and the following

downstream cascade can lead to sepsis [22]. Bacteria can

modify their lipid A, for example by removing fatty acid
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chains or adding decorations to neutralize the phosphates,

changing the molecule from agonist to partial agonist or

antagonist, which is seen in the lipid A from bacteria in the

gut microbiota [7].

A combination of LPS, Pam3Cys (TLR1/TLR2 agonist) and

poly(I:C) (TLR3 agonist) has been used as the adjuvant of the

formalin-inactivated vaccine for respiratory syncytial virus in

mice. The formulation containing LPS was superior as the

presence of LPS inhibits the excessive inflammation in

the lungs while allowing antibody production [23].

The O-deacylated lipooligosaccharide from E. coli J5 is a

potent adjuvant used in combination with alum or lipo-

somes. When administered with Japanese encephalitis

vaccine, it induces a significant level of serum IgG and

virus-neutralizing antibodies. In addition, antibody titers

after immunization were better when using any kind of O-

deacylated LPS combination, compared to alum-only adju-

vated vaccine [24]. Some partially O-deacylated commercial

LPS are: Monophosphoryl 3-Deacyl Lipid A (3D-PHAD1) and

3-Deacyl Monophosphoryl Hexa-acyl Lipid A (3D-(6-acyl)

PHAD1) synthetic molecules. 3D-PHAD1 and 3D-(6-acyl)

PHAD1 augment antibody production of HPV and HBV

vaccines [15].

The Mono-Phosphoryl Lipid A (MPL) is an adjuvant

originally made from the hepta-acylated lipopolysaccha-

ride of Salmonella minnesota R595. Although there are cur-

rently numerous lipid A derived adjuvants that have been

synthesized and commercialized, the most used is the

mono phosphorylated and C14:0 and C14:0 (3-OH)

penta-acylated lipid A (Fig. 1). The lack of the phosphate

at position O-1 of the reducing glucosamine, in addition to

the different acylation pattern from E. coli lipid A reduces

the endotoxicity capacity. HIV-1 and HBV vaccine candi-

dates containing MPL are in the advanced steps of clinical

trials (CT) (NCT03961438; NCT03408262; CT04066881;

EUCTR2016-004991-23-ES; Table 1). MPL is also a compo-

nent of new adjuvant formulations, one of them has re-

cently passed animal and Phase 1 CT (NCT01657929; Table

1) and another one was just patented (WO 2017068482;

Table 1). MPL has also been combined to 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine in the H5-VLP pandemic in-

fluenza vaccine antigen [25].

Some adjuvant formulations that contain MPL have al-

ready been approved and are widely used such as AS01, AS02

and AS04. AS01 is a liposome containing MPL and QS-21 (vide

infra) and seems to be a good candidate for vaccines against

malaria (NCT03917654 and NCT03143218; Table 1). AS02 is a

squalene-containing emulsion of MPL and QS-21, recently

used for malaria [5], Campylobacter jejuni [5] and HIV

(NCT03122223; Table 1) vaccines. AS04, a MPL and alum

salts combination, is used for HPV Bivalent (Types 16, 18)

Recombinant Vaccine (EUCTR2017-000416-42-Outside-EU/

EEA; Table 1) and HBV vaccine.
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Fig. 1. Glycolipid-based adjuvants. E. coli lipid A (PubChem CID 9877306), Monophosphoryl lipid A (PubChem CID 151110) and Trehalose (PubChem
CID 7427), and Galactosylceramide [12].
Lipid A and outer membrane vesicles
Bacterial outer membrane vesicles (OMV) are nanometric

proteoliposomes mostly derived from the outer membranes

of Gram-negative bacteria. They are ubiquitous structures

secreted during the host infection (or in vitro), and they play

key roles during host-pathogens interactions. These proteo-

liposomes are composed of LPS, peptidoglycan, phospholip-

ids, and proteins. Due to the diverse library of different

Pathogen-associated molecular patterns (PAMP) and specific

bacterial antigens, OMV have been explored as antigen car-

riers triggering humoral and cellular immune responses [26].

In addition, OMVs can simultaneously induce the up-regula-

tion of pro-inflammatory cytokines skewing a Th1 phenotype

and triggering specific adaptive immune responses against

the protein antigens contained in the OMV. These adjuvants-

like properties are linked with the OMV LPS, making these

structures a valid carrier for different antigens delivery [27].

Engineered OMV have been recently produced with a

modified (truncated) LPS structure to attenuate their pro-

inflammatory behaviour [26] for example, E. coli attenuated

OMV have been designed as a carrier for H1N1 influenza

antigens [28] and different bacterial OMV have been recently

explored as a carrier for cancer antigens in preclinical studies

[29] Table 2.
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Other glycolipids
Trehalose glycolipids
Trehalose is a-D-glucopyranosyl-(1!1)-a-D-glucopyrano-

side (Fig. 1) with 6-OH groups which can be ester linked

to the lipophilic chains producing trehalose glycolipids

(TGLs). The 6,6’-trehalose diesters can bind and activate

macrophage  inducible C-type lectin (Mincle), leading to

the induction of the Syk-Card9-Bcl1-Malt1 signalling

pathway and a Th1 and Th17 immune responses [10].

Recently, it has been discovered that the diester trehalose

dimycolate (Fig. 1) is toxic when presented in monolayer

hydrophobic surface, but not when it occurs in micelles or

on bacteria [10]. Moreover, within this study a row of

different TGLs was tested, proving that physicochemical

presentation of these lipids (micellar solutions, coated on

plates, coated on beads or surfactant solubilized) influ-

ences the cytokine response by bone marrow derived

macrophages. However, diverse presentation modes

(micelles, plate, beads or solubilized) alter the activation

of each synthetic TGL differently.  It was also clear, that

medium to long-chain TGLs, either coated on plates or

surfactant solubilized, resulted in the highest activation of

the macrophages and TGLs coated on beads had a smaller

cytokine response [10].
g Discov Today: Technol (2020), https://doi.org/10.1016/j.ddtec.2020.09.005
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Table 1. Patents and clinical trials involving carbohydrate-based adjuvants (2017/2019).

Family Carbohydrate-
based molecule

Role in formulation Product
patented

Year Organization Patent number

Chitosan 9012-76-4P sulfated
chitosan

Immunostimulant Adjuvant 2018 Chinese Academy of
Sciences, China

CN 107648603

Chitosan and inositol 9012-76-4 Chitosan
24939-03-5 Poly IC

Immunostimulant Adjuvant 2017 China WO 2017080098

Novel plant
polysaccharide

b-D-
Glucopyranosiduronic
acid derivative

Immunostimulant Cancer vaccine 2019 Imugene Limited,
Australia

WO 2019153042

Glucan 9005-25-8 Starch
9005-82-7 Amylose

Immunostimulant Adjuvant 2017 National Autonomous
Uni., Mexico

MX 2016005434

Lipid A 1246298-63-4 MPL Immunostimulant + Sustained rel. Adjuvant 2017 Cadila Healthcare
Limited, India

WO 2017068482

Peptidoglycan Muramyl dipeptide
derivative

Immunostimulant Adjuvant 2017 Bharat Biotech Int.,
India

WO 2017098529

Saponins Ophiopogonis Radix
saponin (OP-D)

Immunostimulant Adjuvant 2018 PLA Army Medical
Uni., China

CN 108853493

Sucrose 9013-95-0 Levan (6-
kestose)

Immunostimulant Adjuvant 2017 The Institute of Food
Research, UK

GB 20165287

Molecule Aim of CT CT Phase Product studied Completion
year

Organization Registration
number

Dextran Vaccine test Phase II/III BCG vaccine Unknown Serum Institute, India CTRI/2017/03/
008266

Dextran Vaccine test Phase III BCG vaccine 2018 London School of Hygiene
and Tropical Medicine, UK

ISRCTN11311670

MPL-DPPC Adjuvant test:
Immunostimulant +
Sustained release

Phase I H5-VLP for avian
influenza virus

2018 Infectious Diseases Research
Institute, USA

NCT01657929

MPL Vaccine test Phase l ACTHIVE-001
against HIV-1

2021 Universiteit van Amsterdam
(AMC-UvA), Netherlands

NCT03961438

MPL Vaccine test Phase l Ad4HIV against HIV 2020 Imperial College London, UK NCT03408262

MPL Vaccine test Phase III Hepatitis B 2020 Instituto de Investigación
Biomédica de Salamanca,
Spain

EUCTR2016-004991-
23-ES

MPL Vaccine test Phase III DNA/AIDSVAX and
DNA/CN54gp140
against HIV-1

2020 MRC/UVRI Uganda Research
Unit on Aids, Uganda

NCT04066881

AS01 Vaccine test Phase II Pfs230D1M-EPA/AS01
or malaria

2020 National Institute of Allergy
and Infectious Diseases
(NIAID), USA

NCT03917654

AS01 Vaccine test Phase IIIB RTS,S/AS01 and SP/AQ
for malaria

2020 London School of Hygiene
and Tropical Medicine, UK

NCT03143218

AS02 Vaccine test Phase I/IIa ALVAC-HIV (vCP2438)
and of MF591- for HIV

2019 National Institute of Allergy
and Infectious Diseases
(NIAID), USA

NCT03122223

AS04 Vaccine test Phase IIIb HPV-16/18 L1 AS04 vaccine Unknown GlaxoSmithKline Biologicals,
Belgium

EUCTR2017-000416-
42-Outside-EU/EEA

AS04 Vaccine test Phase IV CERVARIX for HPV 2018 Federal University of Rio
Grande do Norte, Brazil

Not registered

Clinical trials (CT); Phase I: Human pharmacology and safety; Phase II therapeutic exploratory; Phase III therapeutic confirmatory/Efficacy; Phase IV Therapeutic use; MPL: Monophosphoryl
lipid A; DPPC: Dipalmitoylphosphatidylcholine.
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Table 2. Summary of findings.

Structure Novelties Action pathway

Lipid A b-(1!6)-linked 1-40-
bisphosphorylated diglucosamine
backbone

Modified acylation and phosphorilation
[23–25]

TLR4/MD-2 complex

Trehalose a-D-glucopyranosyl-(1!1)-a-D-
glucopyranoside

Trehalose glycolipids: lipophilic chains on
OH [10]

Mincle, Th1 and Th17

Galactosylceramide Galactose a-linked to a ceramide a- or b-linked monoglycosylceramides
[12]

CD1d-dependent Natural killer T

Peptidoglycan GlcNAc b-1!4 MurNAc + peptide
chain

Muramyldipeptide derivative VIII: N-
acetyl-muramyl-L-alanine-D-isoglutamine
branched [WO 2017098529]

NOD2 and TLR

Chitosan Partial de-acetylation of chitin b-D-
GlcN (1!4) GlcNAc

Sustained delivery systems [14,31]
Intraocular [33]
Buccal mucosa [34]
Nasal [6]
Aminated and aminated-thiolated
chitosan polymers nanocarriers [6]
Methylation: Trimethyl chitosan [16,32]
Sulfation of the amino or hydroxyl
functions (CN 107648603)

Cytokine binding Dectin-1 and TLR-2

Glucans D-Glucose derived polysaccharides Dextran with cyclic dinucleotide 3030-
cGAMP [36]

Interferons, Th1, B cells and memory T cells

Zymosan for lung administration [38] CD8 + T into lung memory T cells

Inulin Linear b-(2!1)-D-
polyfructofuranosyl-a-D-glucose

AdvaxTM, microcrystalline
polysaccharide from d-inulin [41]

Humoral and cellular responses

Mannans Linear polymers of (1!4) mannose Lipomannan: a-(1!6) mannose with
phosphatidylinositol mannoside at
reducing end,
Regio- and stereo-controlled synthesis,
antigens on amine at the reducing end
[46]

TNF-a, IL-8, IL-12, apoptosis in macrophages
and Th1 cell polarization

Alginate b-D-ManA(1!4)-a-L-GulA(1!4) Oral delivery of antigens [48] Resist acid pH

Saponins Sapogenin/aglycone + saccharide
chains attached

Glabilox: isolated from Glycyrrhiza glabra
[49]

Increase levels IgA, IgG and IgM and Th

Novel polysaccharide Plants can be good sources of new
polysaccharides; however non
purified preparations can be toxic

Isolated from Angelica sinensis: delivery
system [3]

Th1 and Th2 responses

Alhagi pseudalhagi [52] Lymphocyte proliferation, IgG levels, Th1
polarization

Flaxseed hull polysaccharide (FP-1) [55] TNF-a, nitric oxide, and IL-6 and IL-12
Brartemicin TGLs and derivatives containing long-chain

lipids also open a promising path as adjuvants, as they are

strong agonists of Mincle and recent results support that the

aromatic groups play an important role on this interaction.

The so called 9a derivative (Fig. 1) has superior in vivo adju-

vant activity because of the Th1 response that generates [11].

Galactosylceramide
a-Galactosylceramide (a-GalCer) is composed of galactose

a-linked to a ceramide comprised of a C26:0 acyl chain

and 18-carbon phytosphingosine chain (Fig. 1). While the
Please cite this article in press as: Garcia-Vello P, et al. Carbohydrate-based adjuvants, Dru
ceramide interacts with the glycoproteins that present lipid

antigens to T cells CD1d, the a-galactose is exposed to inter-

act with the receptor of the CD1d-dependent Natural killer T

(NKT) cells, leading to the secretion of IFN-g, IL-4, and IL-13

cytokines [12,13]. a-GalCer has already been used for immu-

nization strategies such as intragastric immunization with

whole-cell killed H. pylori. This leads to vigorous intestinal

and systemic Th1 responses [13]. Also, when combined with

B cells and early secretory antigenic target-6, a-GalCer is

effective for the vaccine and treatment against Mycobacterium

kansasii [30].
g Discov Today: Technol (2020), https://doi.org/10.1016/j.ddtec.2020.09.005

www.drugdiscoverytoday.com 5

https://doi.org/10.1016/j.ddtec.2020.09.005


Drug Discovery Today: Technologies | Vol. xxx, No. xx 2019

DDTEC-602; No of Pages 12
Although a-GalCer is very active, the use of other deriva-

tives should also be considered, like a- or b-linked mono-

glycosylceramides. The recognition greatly depends on the

configuration, and normally b-linked monoglycosylcera-

mides are not recognized by NKT even though with the

b-mannosylceramide similar effects can be generated [12].

Peptidoglycan
Peptidoglycan (PG) is a protective layer that surrounds the

cytoplasmic membrane of both Gram-positive and Gram-

negative bacteria, although it is significantly thicker in

Gram-positive bacteria. PG is composed by linear chains of

a repeating N-acetyl-glucosamine b-1!4-linked to N-acetyl-

muramic acid (MurNAc) disaccharide. MurNAc has a peptide

chain usually formed by five aminoacids in the following

order: L-Alanine-D-Isoglutamine-L-Lysine-(or meso-diamino-

pimelic acid-)-D-Alanine-D-Alanine. Generally, the third ami-

noacid is L-Lysine in Gram-positive and meso-

diaminopimelic acid in Gram-negative bacteria. The L-Lysine

is usually chemically linked with aminoacids from another

peptidoglycan strand to form the PG 3-D network (Fig. 2) [8].

Muramyldipeptide is N-acetyl-muramyl-L-alanine-Disoglu-

tamine (Fig. 2) and it is a natural component of the PG of

mycobacteria. As a bacterial component, it activates NOD2

and TLR receptors, leading to potent activation of NF-kB and
Please cite this article in press as: Garcia-Vello P, et al. Carbohydrate-based adjuvants, Dru

Fig. 2. Peptidoglycan (left) and peptidoglycan derived adjuvants structure (rig
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inflammatory cytokine production [8]. Although, many ana-

logues have been developed to be used as vaccine adjuvants,

their high toxicity has limited their usage. Recently a novel

muramylpeptide derivative compound called VIII (Fig. 2) has

been developed and seems promising (WO 2017098529;

Table 1).

Chitin/chitosan
Chitin is a linear polymer of b-1!4 N-acetyl-D-glucosamine

(Fig. 3) that is present in the exoskeletons of arthropods. The

result of its partial de-acetylation is known as chitosan

(Fig. 3). These polymers stimulate cytokine production, leu-

cocyte recruitment, and alternative macrophage activation

by binding TLR2 receptors producing high levels of IL-2 and

IFNg [6]. Chitosan is more commonly used than chitin as a

vaccine adjuvant since its bioadhesive properties and solubil-

ity are more convenient for antigen delivery. Chitosan is used

in many formulations with a novel formulation recently

patented (WO 2017080098; Table 1).

In addition, chitosan slowly releases drugs, making it

optimal for sustained delivery systems. For example, an in-

tradermal composite microneedle has recently been devel-

oped which is composed of two parts: a sodium hyaluronate

tip that rapidly dissolves within the skin releasing the encap-

sulated antigens; and a chitosan base that prolongs antigen
g Discov Today: Technol (2020), https://doi.org/10.1016/j.ddtec.2020.09.005
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Fig. 3. Chitosan (PubChem CID: 71853) and chitosan derived adjuvants.
release for 4 weeks stimulating both Th1 and Th2 responses

[31]. In a new thermoresponsive hydrogel, a copolymer of

chitosan and Poloxamer 407 achieves a complete antigen

release after 18 days inducing uninterrupted cellular and

humoral responses [14].

Chitosan also have mucoadhesive qualities making it ideal

for nasal vaccines. It can open the space between the nasal

epithelial cells, facilitating the antigen intake, in addition to

the previously mentioned immunostimulatory properties [6].

One advantage is that it is suitable for chemical modifications

that improve its properties. For example, aminated and ami-

nated plus thiolated chitosan polymer nanocarriers exhibit

great potential for nasal application of vaccines [6]. Trimethyl

chitosan (Fig. 3) increases the mucoadhesive properties and

has been included in formulations for protection against

group A streptococcus [16] and influenza virus vaccine

[32], producing long lasting humoral and cellular immune

responses in mice. Another modification is the sulfation of

the amino or hydroxyl functions; indeed, 6-O-sulfated chit-

ooligosaccharide and 2-N,6-O-sulfated chitooligosaccharide

(Fig. 3) have recently been patented as potential vaccine

adjuvants (CN 107648603; Table 1).

Chitosan can be used as adjuvant for intraocular adminis-

tration. Protection against Mycoplasma gallisepticum respiratory
Please cite this article in press as: Garcia-Vello P, et al. Carbohydrate-based adjuvants, Dru
disease in poultry has shown to be more effective the intraocu-

larly than the intramuscular vaccine [33]. In addition, chitosan

is used for administration through the buccal mucosa for

successful caries prevention [34].

Glucans
Glucans are D-glucose derived polysaccharides widely extend-

ed in nature. Variations on the chemical structure depend on

the organism from which it is isolated, and some organisms

produce a blend of different glucans. They can be a-config-

ured such as dextran (a-1,6-glucan), glycogen (a-1,4- and

a-1,6-glucan), pullulan (a-1,4- and a-1,6-glucan) and starch

(a-1,4- and a-1,6-glucan) or b-configured like cellulose (b-1,4-

glucan), curdlan (b-1,3-glucan), laminarin (b-1,3- and b-1,6-

glucan), chrysolaminarin (b-1,3-glucan), lentinan (purified

b-1,6:b-1,3-glucan from Lentinus edodes), lichenin (b-1,3- and

b-1,4-glucan), pleuran (b-1,3- and b-1,6-glucan isolated from

Pleurotus ostreatus) and zymosan (b-1,3-glucan from Saccha-

romyces). Glucans bind to lectins activating humoral and

cellular immunity, in particular, b-glucans are recognized

by TLR2 receptors and dectin-1 of macrophages and dendritic

cells leading to Th1/Th17 differentiation [35], although the

literature is still discussing this phenomena due to contami-

nation during the isolation of the polysaccharide. Moreover,
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nanoparticles with aminated b-glucans act as carrier and

immunopotentiators without toxicity [9].

Dextran is one of the most used glucan adjuvants. In a

new intramuscular vaccine platform, cyclic dinucleotide

30,30-cGAMP (stimulator of interferon genes agonist and

adjuvant of interest) was encapsulated in acid-sensitive

acetalated dextran polymeric microparticles. This formula-

tion was superior to any other as it managed to intracellu-

larly deliver the stimulator of interferon genes agonist,

enhanced type-I interferon responses nearly 1000-fold in

vitro and 50-fold in vivo. It also increased Th1-associated

responses, and leaded to robust expansion of germinal cen-

tre B cells and memory T cells, against influenza virus

infections [36]. In addition, there are currently two ongoing

CT in advanced phases on the already commercialized BCG

vaccine for the prevention of tuberculosis recurrence and

the possibility of adding killed Mycobacterium leprae to the

BCG vaccine to protect against leprosy (CTRI/2017/03/

008266 and ISRCTN11311670; Table 1).

New adjuvant patent on raw starch microparticles to be

used in mucosal or systemically was also deposited (MX

2016005434; Table 1).

Curdlan particles alone or in combination with chitosan

could be used as adjuvant for vaccines against the HBV as it is

capable to generate a specific cytokine-mediated immunity

with Th1, Th2, Th17, Th22, and T-regulatory immune

responses [35]. Curdlan can also activate dendritic cells

through dectin 1 and TLR4. Curdlan sulfate is a soluble

derivative of curdlan but its negative charge limits its adsorp-

tion. For this reason, curdlan sulfate-O-linked-(2-Hydroxyl)

propyl-3-trimethyl ammonium chitosan chloride was syn-

thesized enabling proteins or peptides delivery and showing

specially promising results as nasal mucosal immunoadju-

vant [37].

Zymosan shows CD8+ T cells differentiation into tissue-

resident memory T cells in the lung, presumably because it

creates an anti-inflammatory environment likely to support

Trm development. This provides a frontline defence against

respiratory pathogens and has potential to be another ideal

adjuvant for intranasal vaccines [38].

Inulin
d-inulin is a polymer consisting of linear b-(2!1) linked D-

fructosyl residues with a a-D-glucose end group that can

vigorously stimulate humoral and cellular immune responses

and can be conjugated with antigens to increase the vaccine

protective effect [39]. It can also be decorated with mannan to

create microparticles to work as carriers and immunostimu-

lants for immunization against foot-and-mouth disease [40].

AdvaxTM, a novel microcrystalline polysaccharide particle

engineered from d-inulin, provides robust adjuvant potency

together with tolerability and safety. It has recently been

evaluated as mucosal adjuvant for whole inactivated influen-
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za vaccine administered in liquid or dry powder formula-

tions. Advax-adjuvanted inactivated influenza vaccine

generated memory B cell responses and increased lung locali-

zation factors [41].

Mannans
Mannans are linear polymers of (1!4) linked mannose resi-

dues. They activate the immune system by binding to man-

nan-binding lectin and other C-type lectins of the mannose

receptor family [42]. They can be used as adjuvants in natural

or oxidized forms. Mannan derivatives can be covalently

linked to antigens in order to adjuvate humoral and cellular

immunity as in the new vaccine against Leishmaniosis [43] or

linked to muramyl peptide derivatives [44].

The b-1!2-mannan oligosaccharides are components of

Candida albicans cell wall, that when covalently linked to

immunologic stimulants, like tetanus toxoid, induce hu-

moral responses and antibodies production. Recently, it

has been postulated that the b-1!2-mannan and N-terminal

peptide epitopes of Candida albicans could be used as anti-

gens with self-adjuvant properties to develop a vaccine

against candidiasis [45].

Lipomannan is a glycolipid with a repeating unit of

a-(1!6) mannose, present in the surface of Mycobacterium

tuberculosis, which is connected to a phosphatidylinositol at

the reducing end. This group of mannan can stimulate TNF-a,

IL-8, IL-12 production, apoptosis in macrophages and Th1

cell differentiation and their derivatives can be now synthe-

sized in a regio- and stereo-controlled way [46].

Alginate
Alginic acid (E400) is a polysaccharide composed by a b-D-

ManA(1!4)-a-L-GulA(1!4) repetitive disaccharide unit and

is present in cell wall of brown algae. Alginate is hydrophilic

and can be used to encapsulate antigens, for example it has

shown excellent results for vaccines against mycobacterial

infections [47].

In addition, alginates resist acid pH, making them excel-

lent candidates as carrier for oral delivery of protein antigens

since they can protect from the premature release of the

antigens and drugs in the stomach [48].

Saponins
Saponins are amphipathic glycosides, composed by a sapo-

genin/aglycone to which saccharide chains are attached in

varying number and length. Saponins, and in particular

those obtained from Quillaja saponaria the QS saponins,

have been used as vaccine adjuvants for long time. Due to

the amphipathic qualities of saponins, they can bind to

lipids and glycoprotein antigens forming virus-like nanos-

tructures and consequently improving the presentation of

the antigen [49].
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Fig. 4. Structure of a general saponin consisting on a polycyclic aglycone with different glycan substituents (left) and structure of the commercial adjuvant
QS21(right, PubChem CID: 72809956).
QS21 saponin (Fig. 4) is one of the most used saponin

adjuvants, thanks to its capacity to stimulate the Th2 humor-

al and Th1 cell immune responses. It is present in vaccine

formulations against Herpes Zoster, HIV, malaria and cancer

[50]. QS21 has a unique synergy mechanism with MPL

(Monophosphoryl Lipid A), and usually can be found togeth-

er formulated in a liposome (AS01) or emulsion (AS02); see

Lipid A section [5,50].

AbISCO 100 is a commercial mix of highly purified sapo-

nins containing Matrix A (QS7) and C (contains QS21).

AbISCO 100 has recently been used in a vaccine against

Group B Streptococcus, obtaining for the first time significant

cellular immunity associated with the surface Immunogenic

Protein antigen of Streptococcus [17].

Recently a new saponin mix, Glabilox, was isolated

from the roots of Glycyrrhiza glabra. Glabilox in combina-

tion with lipids and glycoproteins of H7N1 influenza virus

produced high titres of IgA, IgG and IgM, and additionally

the response of T helper lymphocytes without toxic

effects [49].

Astragaloside VII, a immunostimulant triterpenoid sapo-

nin isolated from Astragalus trojanus, has been used in a newly

developed nanocarrier system on seasonal influenza A

(H3N2) vaccine showing Th1 and Th2 response and produc-

tion of IFN-g, IL-17A and IgG2a [51].
Please cite this article in press as: Garcia-Vello P, et al. Carbohydrate-based adjuvants, Dru
Novel plant polysaccharides
Plants are good sources of new polysaccharides, however non

purified preparations can be toxic due to their high content of

alkaloids, flavonoids, tannins, and others.

A new polysaccharide has recently been isolated from

Angelica sinensis which consists of a (1!3)-Galp-(1!6)-

GalpOMe! backbone repeating unit, with the latter mono-

saccharide in turn linked at O-3 to GlcpA or Araf monosac-

charides. This polysaccharide was encapsulated into poly

(lactic-co-glycolic acid) nanoparticles to build a new delivery

system which produces strong and sustained Th1 and Th2

responses [3].

A polysaccharide obtained from the secreted fluid of the

leaves of Alhagi pseudalhagi, also appears to be a good candi-

date as an adjuvant, although it is unstable over time and

difficult to obtain in appropriate amounts. Its structure con-

sists of a heteropolysaccharide based on rhamnose, mannose

and galactose [52].

The polysaccharide mix from Purslane plants (POL-P3b),

enhances the effectivity of the foot-and-mouth disease vac-

cine when administered orally with food before the immuni-

zation. It has been hypothesized that it acts by promoting

intestinal dendritic cell maturation [53].

A polysaccharide derived from Poria cocos (PCP-I) compris-

ing fucose, mannose, glucose and galactose enhances the
g Discov Today: Technol (2020), https://doi.org/10.1016/j.ddtec.2020.09.005
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immunogenicity and protection of an anthrax vaccine for-

mulation amplifying the production of specific antibodies

and memory B cells, proliferation of specific splenocytes,

stimulation of the secretion of IL-4 and the activation of

dendritic cells [54].

A novel hetero-polysaccharide from Linum usitatissimum

(FP-1), with a backbone of 2-a-L-Rhap, 4-a-D-GalpA, 4-b-D-

Xylp, 3,5-a-L-Araf and 2-a-D-Xyl, induces expression of TNF-a,

nitric oxide, and IL-6 and IL-12 in murine macrophages; FP-1

also inhibits hepatitis B virus growth and potentially can be

considered as an immunostimulant vaccine adjuvant [55].

Vegetables are also a huge potential area for the discovery

of new carbohydrate adjuvants. New formulations for vac-

cines against Helicobacter pylori include the epithelium poly-

saccharide of Trollius chinensis polysaccharide, rhizome

polysaccharide of Siberian solomonseal and polysaccharides

of Astragalus plants [56]. As well, a new formulation for

Newcastle disease vaccine contains a flower polysaccharide

of Paulownia tomentosa [57] and the Astragalus polysacchar-

ides can be used for adjuvancy on Vibrio harveyi [58] and

Edwardsiella ictaluri vaccines [59].

Concluding remarks and future perspectives
Carbohydrate-based molecules are potent and safe adju-

vants used alone or in combination. They show advantages

over alum such as reduced side effects and the activation of

both humoral and cellular immune responses, being capa-

ble to adjuvate an immune response against intracellular

pathogens.

There are numerous ongoing investigations and clinical

trials as well as new patents related to carbohydrate-based

adjuvants. Nonetheless, current research teams continue to

produce innovative modifications of the bacterial molecules

Lipid A and Peptidoglycan changing their adjutancy power.

Likewise, significant research is being carried out on chitosan

and alginates, paving the way for the development of inno-

vative delivery systems that permit intraocular, buccal, nasal

and sustained oral administration of antigens. Besides, glu-

cans and mannans present extraordinary libraries of vaccine

adjuvants. Derivatizations on dextran with cyclic dinucleo-

tides have given good results as well as the use of zymosan for

lung administration. In addition, the trehalose glycolipids

and galactosylceramide are also in consideration for the

development of new adjuvants.

Moreover, there are many positive prospects on the novel

formulations AdvaxTM and Glabilox. Both AdvaxTM; a micro-

crystalline polysaccharide particle engineered from d-inulin,

and Glabilox; a new saponin mix, show a positive stimulation

of the immune system.

The data included in this review demonstrates that carbo-

hydrate-based adjuvants are excellent candidates for vaccine

development, however there is still much research to be done

on the already known carbohydrate-based adjuvants, to test
Please cite this article in press as: Garcia-Vello P, et al. Carbohydrate-based adjuvants, Dru
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them with new antigens and in new formulations. In addi-

tion, the exploration for new carbohydrates should continue;

perhaps plants and other natural products can be a very

interesting source for new polysaccharides, with new and

promising activities.
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