967 research outputs found

    Small room for compromise between oil palm cultivation and primate conservation in Africa

    Get PDF
    Despite growing awareness about its detrimental effects on tropical biodiversity, land conversion to oil palm continues to increase rapidly as a consequence of global demand, profitability, and the income opportunity it offers to producing countries. Although most industrial oil palm plantations are located in Southeast Asia, it is argued that much of their future expansion will occur in Africa. We assessed how this could affect the continent’s primates by combining information on oil palm suitability and current land use with primate distribution, diversity, and vulnerability. We also quantified the potential impact of large-scale oil palm cultivation on primates in terms of range loss under different expansion scenarios taking into account future demand, oil palm suitability, human accessibility, carbon stock, and primate vulnerability. We found a high overlap between areas of high oil palm suitability and areas of high conservation priority for primates. Overall, we found only a few small areas where oil palm could be cultivated in Africa with a low impact on primates (3.3 Mha, including all areas suitable for oil palm). These results warn that, consistent with the dramatic effects of palm oil cultivation on biodiversity in Southeast Asia, reconciling a large-scale development of oil palm in Africa with primate conservation will be a great challenge

    The Non-Canonical Wnt/PKC Pathway Regulates Mitochondrial Dynamics through Degradation of the Arm-Like Domain-Containing Protein Alex3

    Get PDF
    The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation

    Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia

    Get PDF
    Article first published online: 21 APR 2014Indonesia contributes significantly to deforestation in Southeast Asia. However, much uncertainty remains over the relative contributions of various forest-exploiting sectors to forest losses in the country. Here, we compare the magnitudes of forest and carbon loss, and forest and carbon stocks remaining within oil palm plantation, logging, fiber plantation (pulp and paper), and coal mining concessions in Indonesia. Forest loss in all industrial concessions, including logging concessions, relate to the conversion of forest to nonforest land cover. We found that the four industries accounted for ∌44.7% (∌6.6 Mha) of forest loss in Kalimantan, Sumatra, Papua, Sulawesi, and Moluccas between 2000 and 2010. Fiber plantation and logging concessions accounted for the largest forest loss (∌1.9 Mha and ∌1.8 Mha, respectively). Although the oil palm industry is often highlighted as a major driver of deforestation, it was ranked third in terms of deforestation (∌1 Mha), and second in terms of carbon dioxide emissions (∌1,300–2,350 Mt CO2). Crucially, ∌34.6% (∌26.8 Mha) of Indonesia's remaining forests is located within industrial concessions, the majority of which is found within logging concessions (∌18.8 Mha). Hence, future development plans within Indonesia's industrial sectors weigh heavily on the fate of Southeast Asia's remaining forests and carbon stocks.Sinan A. Abood, Janice Ser Huay Lee, Zuzana Burivalova, John Garcia-Ulloa, and Lian Pin Ko

    Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Get PDF
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates (413/ha?yr–413/ha?yr–637/ha?yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of −299/ha?yr−-299/ha?yr--65/ha?yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes

    Bioenergy production and sustainable development: science base for policymaking remains limited

    Get PDF
    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories – environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production

    A standard set of person-centred outcomes for diabetes mellitus: results of an international and unified approach

    Get PDF
    AIMS To select a core list of standard outcomes for diabetes to be routinely applied internationally, including patient-reported outcomes. METHODS We conducted a structured systematic review of outcome measures, focusing on adults with either type 1 or type 2 diabetes. This process was followed by a consensus-driven modified Delphi panel, including a multidisciplinary group of academics, health professionals and people with diabetes. External feedback to validate the set of outcome measures was sought from people with diabetes and health professionals. RESULTS The panel identified an essential set of clinical outcomes related to diabetes control, acute events, chronic complications, health service utilisation, and survival that can be measured using routine administrative data and/or clinical records. Three instruments were recommended for annual measurement of patient-reported outcome measures: the WHO Well-Being Index for psychological well-being; the depression module of the Patient Health Questionnaire for depression; and the Problem Areas in Diabetes scale for diabetes distress. A range of factors related to demographic, diagnostic profile, lifestyle, social support and treatment of diabetes were also identified for case-mix adjustment. CONCLUSIONS We recommend the standard set identified in this study for use in routine practice to monitor, benchmark and improve diabetes care. The inclusion of patient-reported outcomes enables people living with diabetes to report directly on their condition in a structured way

    Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models

    Get PDF
    This aims of this study were (I) to determine the velocity variable and regression model which best fit the load-velocity relationship during the free-weight prone bench pull exercise, (II) to compare the reliability of the velocity attained at each percentage of the one-repetition maximum (1RM) between different velocity variables and regression models, and (III) to compare the within- and between-subject variability of the velocity attained at each %1RM. Eighteen men (14 rowers and four weightlifters) performed an incremental test during the free-weight prone bench pull exercise in two different sessions. General and individual load-velocity relationships were modelled through three velocity variables (mean velocity [MV], mean propulsive velocity [MPV] and peak velocity [PV]) and two regression models (linear and second-order polynomial). The main findings revealed that (I) the general (Pearson's correlation coefficient [r] range = 0.964-0.973) and individual (median r = 0.986 for MV, 0.989 for MPV, and 0.984 for PV) load-velocity relationships were highly linear, (II) the reliability of the velocity attained at each %1RM did not meaningfully differ between the velocity variables (coefficient of variation [CV] range = 2.55-7.61% for MV, 2.84-7.72% for MPV and 3.50-6.03% for PV) neither between the regression models (CV range = 2.55-7.72% and 2.73-5.25% for the linear and polynomial regressions, respectively), and (III) the within-subject variability of the velocity attained at each %1RM was lower than the between-subject variability for the light-moderate loads. No meaningful differences between the within- and between-subject CVs were observed for the MV of the 1RM trial (6.02% vs. 6.60%; CVratio = 1.10), while the within-subject CV was lower for PV (6.36% vs. 7.56%; CVratio = 1.19). These results suggest that the individual load-MV relationship should be determined with a linear regression model to obtain the most accurate prescription of the relative load during the free-weight prone bench pull exercise
    • 

    corecore