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Abstract

The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize
mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3)
that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial
aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and
dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which
was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced
by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we
observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels,
thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt
pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation.
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Introduction

Mitochondria are essential organelles for many biological

processes, including respiration, energy production and cell

viability. Because of the length of neuronal processes (axons and

dendrites) and the function of mitochondria in neurotransmission

and neural integration, the correct distribution of these organelles

is crucial for neuronal function [1]. In fact, impaired distribution

and function of mitochondria and/or mutations in mitochondrial-

related motors has been found in neurological diseases, including

Parkinson’s, Alzheimer’s, and Huntington’s Disease, as well as in

rare disorders such as Charcot Marie-Tooth disease [2–4].

In a previous study we provided evidence that proteins encoded

by the Eutherian-specific Armcx gene family localize to mito-

chondria [5]. Furthermore, that study demonstrated that at least

one member of this family, Alex3, interacts with the Kinesin/

Miro/Trak2 protein complex responsible for mitochondrial

trafficking [6–8]. Interestingly, this interaction is Ca2+-dependent,

and Alex3 was found to control mitochondrial aggregation,

dynamics and trafficking in neurons [5]. This finding suggests

that this Eutherian-specific family of mitochondrial proteins adds a

further degree of molecular complexity and regulation to

mitochondrial dynamic events in the brains of higher vertebrates.

Members of the Alex protein family (Alex1–3; for Arm-

containing protein Lost in Epithelial cancers linked to the X

chromosome) were initially described as putative tumor-suppressor

genes, as their expression is reduced in several epithelial-derived

carcinomas, including lung, prostate, colon, and pancreas cancer

[9]. While Alex1 and 2 are widely expressed in numerous tissues,

Alex3 is found mainly in the nervous system. Previously, we

characterized Alex3 as a gene preferentially expressed in the upper

layers of the developing cerebral cortex [10]. That study

confirmed the preferential expression of this gene in neural tissue

and its developmental regulation. A recent report described Alex3

as a Sox10-interacting protein that localizes in the mitochondria of

OBL21 cells and suggested a novel signaling cascade between

mitochondria and the nucleus through a Sox10/Alex3 protein

complex [11].

Some extracellular signals, synaptic activity, neurotransmitters

and growth factors have been reported to regulate the transport

and dynamics of mitochondria, thus targeting these organelles to

energy-demanding cell territories [12–17]. However, very little is

known about the molecular mechanism regulating this process and

about the extent to which extracellular signals control mitochon-

drial trafficking and targeting. The Alex3 protein sequence

contains 6 Armadillo-like domains, arranged in a unique
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DUF463 domain, whose function remains unknown [5]. Typical-

ly, Armadillo domains are involved in the regulation of Wnt/b-

catenin signaling in many cells types and play multiple and

important roles in both normal development and in the

pathogenesis of numerous diseases, particularly cancer [18–20].

Here we describe that the Wnt signaling cascade regulates

mitochondrial dynamics by controlling Alex3 protein levels by

degradation. Furthermore, our data show that the degradation of

this protein is mediated by the Wnt downstream effectors PKC or

CKII. Our results support the notion that the Wnt pathway

controls mitochondrial dynamics by regulating Alex3 protein

levels.

Materials and Methods

Plasmid Vectors
Alex3 39-UTR was found in a Substractive Hybridization library

[10], and the full sequence was obtained by screening a P0 mouse

brain cDNA library (Stratagene). For the generation of Alex3,

Alex3-myc and GFP-Alex3DNt expression vectors, pBluescript-

Alex3 was subcloned into the following expression vectors:

pcDNA.3 (Invitrogen), pSecTag-A (Invitrogen) and pEGFP-N3

and pEGFP-C1 (Clontech). For the generation of the constructs

Alex3-GFP, AlexDCt, Alex3(1–200)-GFP, Alex3(1–106)-GFP,

Alex3(1–45)-GFP, Alex3(1–41) and Alex3 (1–30), Alex3 was

amplified with high fidelity Pfu (Stratagene), and a BamHI

restriction site was introduced by using appropriate primers

(Forward: 59-CTATAGGGCGAATTGGGTACCG-39; and re-

verse: for Alex3-GFP 59-GGATCCTTCCTGACTCTTTGG-

GAACATCC-39; for Alex3DCt-GFP 59-GGATCCAA-

CATCCTTTCAGTCAGTT-39; for Alex3(1–200)-GFP 59-

GGATCCAAGCCTGCGCTGATTTTCGG-39; for Alex3(1–

106)-GFP 59-GGATCCCATCATCATCATCAGACCA-39; for

Alex3(1–45)-GFP 59-GGATCCATCACCAGAGCCACCCTCA-

39; for Alex3(1–41)-GFP 59-GGATCCCCAGAGCCACCCT-

CAGCCA-39 and for Alex3(1–30)-GFP 59-GGATCCCTCAGC-

CATTTTCTCCTTG-39). All the constructs generated were

sequenced with BigDye-Terminator v3.1 (Applied Biosystems).

Mitochondrial-targeted DsRed (MitDsRed) was a gift from

Antonio Zorzano (IRB Barcelona). pcDNA-Wnt1 and pcDNA-

b-catenin S33 were a gift from E. Batlle (IRB Barcelona). pcDNA-

Fz2-HA, pcDNA-Wnt5a, pcDNA-Wnt11 and pcDNA-Dvl2 were

a gift from P. Bovolenta (CBM, CSIC, Madrid).

Treatment with Wnts and Pharmacological Inhibitors
Recombinant mouse Wnt3a was used at 200 or 400 ng/ml and

Recombinant mouse Wnt5a at 400 or 800 ng/ml (both from

R&D Systems). LiCl and SB216763 (Sigma Aldrich) were used as

inhibitors of GSK3b at 10 mM and 10 mM respectively. MG-132

(Merck-Calbiochem) was used as proteasome inhibitor at 10 mM,

SP600125 (Sigma-Aldrich) as Jun-kinase inhibitor at 10 mM and

KN62 (Bioscience) as CAMKII inhibitor at 25 mM. Cypermetrin

(Biogen) was used as Calcineurin inhibitor at 10 mM, Casein

kinase II inhibitor I (Merck-Calbiochem) as CK2 inhibitor at

100 mM, Calphostin C (Merck-Calbiochem) as PKC inhibitor at

1 mM, BAPTA/AM (Merck-Calbiochem) as intracellular calcium

chelator at 20 mM, and cycloheximide (Sigma-Aldrich) as protein-

synthesis inhibitor at 40 mg/ml. These drugs and reagents were

used 4 h after transfection. TPA (Merck-Calbiochem) at 1 mM was

used as PKC activator 19 h after transfection. Twenty-four hours

after transfection, all the cells were fixed or lysed for immunocy-

tochemistry or Western analysis respectively.

Figure 1. Schematic representation of Alex3 protein. Predicted domains are annotated on the basis of databases such as Pfam, Smart or
Wolfpsort and bibliographic references. The stars show the position of putative phosphorylation sites in serine or threonine residues by CK2, PKC and
PKA kinases.
doi:10.1371/journal.pone.0067773.g001

Alex3-Dependent Mitochondrial Dynamics
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Cell Culture and Transfection
HEK293 cells were used for all the experiments. Cells were

cultured in DMEM medium supplemented with 10% Fetal Bovine

Serum (FBS), 2 mM glutamine, 120 mg/ml Penicillin and 200 mg/

ml Streptomycin and were maintained at 37uC in the presence of

5% CO2. Upon confluence, cells were trypsinized (0.25% w/v)

and plated at the desired density. After two days, cells were

transfected using Fugene6 (Roche Diagnostics), following the

manufacturer’s instructions, and using a 1:1 DNA ratio (or as

indicated) when two constructs were transfected. Cells were

processed as required 24–36 h after transfection.

Figure 2. The N-terminal domain of Alex3 is sufficient to induce mitochondrial aggregation. (A–D) Overexpression of Alex3-GFP (green)
in HEK293T cells induces severe alterations of the mitochondrial network when compared with the expression of control GFP (A). (B) Illustrates an
Alex3-transfected cell displaying normal mitochondrial morphology; (C,D) Alex3-overexpressing cells showing mild aggregating phenotypes (C) and
severe aggregating mitochondrial phenotypes (D); Alex3 protein was visualized in green, mitochondria in red (MitDsRed), and nuclei were labeled
with bisbenzimide (blue). (E) Quantification and graphical representation (mean 6 standard deviation) of mitochondrial phenotypes in control (GFP)
and Alex3-GFP-overexpressing cells. (F) Top: Scheme of the Alex3-GFP deletion constructs used for transfection. Bottom: Western Blot showing
representative truncated Alex3-GFP constructs at the predicted protein sizes. (G–J) Photomicrographs illustrating that expression of the Alex3(1–
200)-GFP (G), Alex3(1–106)-GFP (H) and Alex3(1–30)-GFP (I) constructs leads to mitochondrial aggregation; in contrast, deletion of the first N terminal
12 aa (GFP-Alex3DNt) targets Alex3 protein to the nucleus (J). Note that the 30 aa N-terminus deletion construct has a truncated outer mitochondrial
membrane localization sequence, which may interfere with its mitochondrial targeting, thereby leading to nuclear localization. (K) Quantification and
graphical representation (mean 6 standard deviation) of mitochondrial phenotypes in HEK293T cells after transfection with several truncated Alex3-
GFP constructs; the data show that all the constructs containing the N terminal region cause mitochondrial aggregation. Alex3 protein was visualized
in green (GFP), mitochondria in red (MitDsRed) and nuclei in blue (bisbenzimide). Scale bar: 10 mm.
doi:10.1371/journal.pone.0067773.g002
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Figure 3. Wnt/Frizzled signaling restores the normal mitochondrial phenotype in Alex3-overexpressing cells. (A–F) Co-expression of
Alex3 (green) and several members of the Wnt/Frizzled signaling pathway; Wnt1, Fz2, Wnt5a and Wnt11 reverse the aggregated mitochondrial
phenotypes induced by Alex3 overexpression in HEK293AD cells. (G–L) High magnifications of boxed areas shown in (A–F). Note that the aggregated
phenotype induced by the expression of Alex3 (G,H) is reversed by the co-expression of different members of the Wnt pathway (I–L). (M)
Quantification and graphical representation (mean 6 standard deviation) of mitochondrial phenotypes resulting after transfection with distinct Wnts
and Fz2, demonstrating different degrees of mitochondrial aggregation reversion by the constructs used. Alex3 protein was visualized in green,
control mitochondrial distribution (A) in red (MitDsRed), b-catenin in red (B–F) and nuclei in blue (bisbenzimide). Scale bar: 10 mm.
doi:10.1371/journal.pone.0067773.g003
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Immunocytochemistry
HEK293 cells were fixed in 4% paraformaldehyde. After

fixation, they were permeabilized with Triton X-100 in PBS and

blocked with blocking buffer (10% FBS (Roche Diagnostics),

0.2 M glycine, 0.1% Triton X-100 and 0.05% Deoxicolic acid in

PBS-2% gelatin) for 1 h at room temperature. To label the cells,

the following antibodies or dyes were used: rabbit anti-Alex3

(1:300) [5], rabbit anti-GFP (1:500, Invitrogen), mouse anti-b-

catenin (1:500, Beckton Dickinson) in blocking buffer for 2 h and

with the corresponding secondary antibodies labeled with fluoro-

chromes (Alexafluor 546 or 488, Invitrogen, Carlsbad, CA).

Nuclei were stained with bisbenzimide (Hoechst-33342). When

Figure 4. The Wnt/Frizzled pathway induces the degradation of Alex3 protein. (A) WBs showing that Wnt1 co-transfection (left) and
incubation with Wnt1-conditioned media (CM, right), but not treatment with Wnt3a (200 ng/ml) (middle), induces the degradation of Alex3 protein.
(B) WB showing that co-transfection with Wnt1, Fz2, Wnt5a and Wnt11 lead to different reductions in Alex3 protein levels (left). Recombinant Wnt5a
also induces Alex3 degradation in a concentration-dependent manner (right).
doi:10.1371/journal.pone.0067773.g004

Figure 5. Alex3 degradation is independent of the canonical Wnt/b-catenin pathway. (A,B) Constitutively active b-catenin (red) neither
induces Alex3 protein degradation, as seen in WB (A), nor reverts the aggregated mitochondrial phenotypes induced by Alex3 overexpression (green
in B). Nuclei were visualized in blue (bisbenzimide) (B). (C,D) Neither co-transfection with Dvl2 (C) nor the inhibition of GSK3b with 10 mM LiCl or
with 10 mM SB212763 (D) induces Alex3 protein degradation. Wnt1 transfection was used as a control for Alex3 degradation. Scale bar: 10 mm.
doi:10.1371/journal.pone.0067773.g005

Alex3-Dependent Mitochondrial Dynamics
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necessary, mitochondria labeling was carried out by incubation

with the mitochondrion-selective dye MitoTracker Orange CM-

H2TMRos (1:2000, Molecular Probes, Invitrogen) in culture

medium for 30 min at 37uC prior to cell fixation. All samples were

then mounted on Mowiol. Because Alex3 protein colocalizes with

the mitochondrial network in HEK293T cells [5], even after Wnt

treatments (not shown), we routinely used Alex3 immunolabeling

to monitor and analyze mitochondrial networks.

Protein Cell Extracts and Western Blot
HEK293 cells were obtained and lysed in Laemmli Buffer (LB)

at 98uC for 5 min. 20 mg of protein for each sample was loaded

and run in polyacrylamide gels at 100 V. Transfer to nitrocellulose

membranes was performed in 120 mM glycine, 125 mM Tris,

0.1% SDS, and 20% methanol at 35 V o.n. Membranes were then

blocked in 5% powder milk in TBS and incubated with primary

antibodies anti-Alex3 (1:2000), anti-GFP (1:1000, Invitrogen),

anti-b-catenin (1:1000, Beckton Dickinson), anti-HA (1:1000,

Invitrogen). Anti-actin (1:1000, Chemicon, Temecula, CA) or b-

tubulin (1:50.000, Atom) were used as a loading control.

Secondary antibodies coupled to HRP were used diluted

1:2500 in TBS containing 5% powder milk. Labeling was

visualized with ECL plus (Amersham Pharmacia Biotech).

Quantification Analysis
For quantification of mitochondrial phenotypes, cells were

classified as ‘‘Normal’’ (cells with an even distribution of

mitochondria forming a dense meshwork), ‘‘Aggregated’’ referred

to mitochondrial phenotypes with clustered mitochondria near the

perinuclear zone, and ‘‘Mild-phenotype’’ for intermediate pheno-

types [5]. Between 113 and 344 cells from 2 independent

experiments were quantified for each condition. For Western Blot

quantification, ‘‘Gel-Pro Analyzer’’ Software was used. The IOD

value was normalized with respect to the ‘‘Alex3 control’’ value

and results were shown below the images. Results below ‘‘0.05’’

were considered as ‘‘0’’.

Live Imaging Analysis
HEK293T cells were seeded onto Poly-D-lysine-coated Fluorod-

ish plates (World Precision Instruments, Inc) transfected with

Alex3-GFP, MitDsRed or Wnt1 (as above) and filmed 24 h later

using a Leica TCS SP2 confocal microscope (Leica Microsystems)

equipped with a 63x immersion oil objective. Treatment with TPA

Figure 6. Alex3 degradation by Wnt1 is independent of the proteasome, JNK, CAMKII and Calcineurin pathways. (A) Proteasome
inhibition with 10 mM MG-132 treatment blocks the normal turnover of Alex3 protein but not its Wnt1-induced degradation. (B) Numerous Alex3-
overexpressing HEK293AD cells treated with the proteasomal inhibitor MG132 show the most severe mitochondrial aggregating phenotype. (C)
Inhibition of JNK with 10 mM SP600125 (downstream effector of the Wnt/PCP pathway), CAMKII with 25 mM KN62 or Calcineurin with 10 mM
Cypermetrin (downstream effectors of the Wnt/Ca2+ pathway) do not induce Alex3 protein degradation. Scale bar: 10 mm.
doi:10.1371/journal.pone.0067773.g006
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Figure 7. PKC and CKII phosphorylation protects against Wnt/Frizzled degradation of Alex3. (A) Inhibition of CKII (with 100 mM casein
kinase II inhibitor I), downstream effector of the Wnt signaling pathway, is sufficient to trigger Alex3 degradation. (B) In contrast, PKC activation with
1 mM TPA protects against Wnt1-induced degradation of Alex3 protein. (C,D) Inhibition of PKC (with 1 mM Calphostin C) and treatment with 20 mM
BAPTA/AM, an intracellular calcium chelator, also reproduces Wnt1 degradation. (E) Photomicrographs demonstrating that treatment with TPA
prevents Alex3 degradation induced by Wnt1 and the reversion to normal mitochondrial phenotypes. (F) Quantification and graphical representation
(mean 6 standard deviation) of mitochondrial phenotypes in HEK293AD cells in the conditions shown in (E); note that incubation with TPA prevents
the rescue of mitochondrial phenotypes induced by Wnt1. Scale bar: 10 mm. The quantification of Alex3 protein levels is shown at the bottom.
doi:10.1371/journal.pone.0067773.g007
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was used as described above. All the cultures were kept at 37uC
using a heating insert on the microscope stage and an incubating

chamber allowing circulation of a controlled CO2 (5%)-air heated

mixture for the control of pH. Time-lapse series of image stacks

composed of 5 images (5126512 px) were taken every 6 sec over

8 min using Leica Confocal Software (Leica Microsystems).

Further image processing and video compilation (7 frames per

sec) and edition was done with ImageJ software (version 1.43K,

NIH, USA).

Results

The N Terminus Region of Alex3 is Necessary and
Sufficient for Mitochondrial Targeting and Aggregation

Alex3 is a 379-aa protein containing several regions and motifs,

including 6 Arm-like domains conforming a DUF463 domain (aa

110–363), a nuclear localization signal (aa 89–98), and an N-

terminal region containing a transmembrane domain (aa 7–29)

and a putative outer mitochondrial membrane targeting signal

(Figure 1). Gavel and von Heijne’s method [21] also detected a

predicted cleavage site for mitochondrial presequence translocase

(aa 30–34). These predicted mitochondrial-related protein se-

quences are consistent with the preferential mitochondrial

localization of Alex3 protein [5,11]. To characterize the Alex3

protein regions required for mitochondrial targeting, we generated

several Alex3 constructs with deletions at the C-terminal region

and tagged them with GFP. In agreement with a previous study

[5], transfection of Alex3 cDNA in HEK293AD cells led to

mitochondrial aggregating phenotypes, which varied between mild

aggregation mitochondrial phenotypes (mild-phenotype), in which

individual mitochondria were still visible (52% cells), and strong

aggregating phenotypes, which led to single, large mitochondrial

aggregates located close to cell nuclei (39% cells) (Figure 2A–E).

For these experiments, we indistinctly used the mitochondrial

markers MitDsRed and Mitotracker, which labeled the mitochon-

drial network efficiently and in a similar manner; furthermore,

both markers fully co-localized with Alex3 (Figure S1). Transfec-

tion with all the C-terminus-deleted Alex3 cDNA constructs,

including Alex3DCt-GFP, Alex3(1–200)-GFP, Alex3(1–106)-GFP,

Alex3(1–45)-GFP, yielded similar mitochondrial phenotypes

(Figure 2F–K and not shown). Interestingly, we found that even

the smaller construct, containing only the first 30 N-terminus aa

(Alex3(1–30)-GFP), resulted in identical mitochondrial pheno-

types. This observation thus indicates that this N-terminal region is

sufficient for both mitochondrial targeting and aggregation

(Figure 2I). Conversely, transfection with an Alex3 cDNA lacking

only the first N-terminal 12 aa prevented mitochondrial targeting

(and aggregation), thereby indicating that the N-terminal region,

where the mitochondrial targeting signal is predicted, is required

to tether Alex3 protein to mitochondria (Figure 2J). Control

transfections, including pcDNA and pEGFP-N3 plasmids, did not

result in mitochondrial aggregation.

The Wnt Pathway Regulates Alex3 Protein Levels and
Mitochondrial Aggregation

The Alex3 protein sequence contains 6 Arm-like domains

arranged at the C-terminal region (Figure 1). Some previous

studies have proposed a putative link between mitochondrial

proteins and the Wnt/b-catenin pathway [22,23]. We thus

examined whether Wnt proteins affected the phenotypes induced

by Alex3. We found that the mitochondrial aggregating pheno-

types caused by the expression of this protein were dramatically

reversed by co-transfecting HEK293AD cells with Wnt1 cDNA,

which produced a disaggregation phenotype in contrast to

HEK293AD cells transfected with Alex3 alone (Figure 3A–C

and Figure S2). We next analyzed whether non-canonical Wnt

signaling components affected Alex3-induced mitochondrial phe-

notypes. We observed that co-transfection of Alex3 with the

receptor Fz2, Wnt5a or Wnt11 cDNAs had intermediate effects on

mitochondrial disaggregating phenotypes under our transfection

conditions, in comparison with the canonical Wnt1 protein

(Figure 3D–F and Figure S2 and S3). These data were reinforced

by experiments in which recombinant Wnt5a led to decreased

cellular levels of Alex3 and mitochondrial disaggregation (Figure

S4). In contrast, treatment with another canonical Wnt member,

Wnt3a, did not result in disaggregation of Alex3-induced

mitochondrial phenotypes (Figure S5). High magnifications of

the Alex3-transfected cells (Figure 3G–L) and a quantitative

evaluation of the mitochondrial phenotypes seen after transfection

or incubation with the several Wnt members and signaling

components substantiate this notion (Figure 3M). Moreover, the

mitochondrial localization of Alex3 was maintained in all the

above conditions (Figure S2 and S4).

During the course of the above experiments, we noted that

Alex3 immunofluorescence signals decreased upon treatment with

Wnt1 and Fz2 (see Figure 3C,D). To support this observation, we

performed Western Blot analyses on transfected HEK293AD cell

lysates. First, we confirmed that transfection with Wnt1 cDNA or

treatment with recombinant Wnt3a protein or incubation with

Wnt1 protein stabilized b-catenin levels, thus indicating that these

extracellular factors were functional (Figure 4A). Next, we

measured Alex3 protein levels by Western Blot. As shown in

Figure 4A, while Wnt1 transfection or incubation led to a dramatic

decrease in Alex3 protein levels, Wnt3a treatment at 200 ng/ml

had no effect on this parameter. Furthermore, we found that Fz2

caused a dramatic decrease in Alex3 levels; in contrast, Wnt5a and

Wnt11 produced a mild decreased in Alex3 protein levels, which

accounted for ,20–50% (3 independent experiments; Figure 4B).

Moreover, we did not observe signs indicative of cell death (e.g.,

pyknotic cells in cultures) in any experiment or condition. Taken

together, these findings indicate that Wnt1, and to a lesser extent

other Wnt members, lead to a decrease in Alex3 protein levels,

which in turn results in an almost complete reversion of the Alex3-

induced phenotypes on mitochondrial aggregation.

Alex3 Levels are not Regulated by Canonical Wnt/b-
catenin Downstream Signaling Components

We next addressed whether components of the canonical Wnt

pathway, which are known to activate the b-catenin pathway,

affected Alex3 protein levels. First, we found that co-transfection of

Alex3 with constitutively active b-catenin S33A [24] did not result

in Alex3 degradation (Figure 5A). In agreement with these results,

individual HEK293AD cells with highly stabilized b-catenin

displayed Alex3-induced mitochondrial aggregating phenotypes

Figure 8. Wnt1 increases mitochondrial motility and dynamics. Series of representative confocal images, taken every 225 sec, from live
HEK293T cells overexpressing the mitochondrial tagged protein MitDsRed (A), Alex3-GFP fusion protein (B), or Alex3-GFP and Wnt1 cDNAs (4:1)
(C,D). In (D) TPA treatment was used to activate PKC. Arrows identify areas with highly dynamic mitochondria. While mitochondrial motility is high in
control (A) and Alex3-GFP/Wnt1 (C) conditions, it is severely reduced in Alex3-GFP-overexpressing cells (B) and in Alex3-GFP/Wnt1/TPA-treated cells
(D). (See also Videos S1, S2, S3, and S4). Scale bar: 10 mm.
doi:10.1371/journal.pone.0067773.g008
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which were similar to those observed after transfection of Alex3

cDNA alone (see above and Figure 5B). Furthermore, transfection

with Disheveled2, which also activates the canonical Wnt/b-

catenin pathway, was also ineffective at preventing a decrease in

Alex3 protein levels (Figure 5C).

Finally, incubation with two inhibitors of GSK3b activity,

namely LiCl or SB216763, did not prevent Wnt1-induced Alex3

degradation (Figure 5D). Taken together, these experiments

indicate that activation of several intracellular components of the

canonical Wnt/b-catenin pathway is not sufficient to cause Alex3

degradation or to alter the degradation of Alex3 induced by Wnt1

treatment.

PKC Regulates Alex3 Degradation
We next tested whether the degradation of Alex3 triggered by

Wnt1 was dependent on the proteasome. First, we demonstrate

through cycloheximide assays that Alex3 Wnt/PKC-dependent

reduction levels is due to protein degradation (Figure S6). We then

found that inhibition of the proteasome with MG-132 incremen-

ted Alex3 protein in the absence of Wnt1 (Figure 6A,B). However,

the same inhibitor did not alter the degradation of Alex3 induced

by Wnt1 (Figure 6A).

The above results suggested that the Wnt signaling mechanisms

that lead to Alex3 degradation are upstream of the above Wnt

signaling components examined (b-catenin, Disheveled2 and

GSK3). We next tested the impact of additional, non-canonical

signaling pathways that are activated by the Wnt cascade, such as

the Wnt/Planar Cell Polarity (PCP) Jun kinase pathway and the

Wnt/Ca2+ pathway [18–20]. However, inhibition of Jun kinase

(with SP600125), CAMKII (KN62) and Calcineurin (Cyperme-

trin), all three downstream components of the PCP and Ca2+

pathways, did not reduce the degradation of Alex3 protein caused

by Wnt1 incubation (Figure 6C).

Phosphorylation/dephosphorylation often targets proteins to

degradation [24]. The Alex3 protein sequence has several putative

phosphorylation sites for CK2, PKA and PKC, all of them

downstream effectors of the Wnt pathway (Figure 1). We thus

tested whether the inhibition of these kinases affected Alex3

degradation. CK2 inhibition (using CK2 inhibitor-1) reduced the

levels of Alex3 protein and increased the Wnt1-induced degrada-

tion of this protein (Figure 7A), thereby suggesting that dephos-

phorylation of Alex3 activates its degradation. Furthermore, we

found that activation of PKC by TPA abolished the Wnt1-

mediated degradation of Alex3 (Figure 7B). Conversely, inhibition

of PKC by Calphostin C or by using the Ca2+ intracellular

chelator BAPTA/AM slightly enhanced the Alex3 degradation

induced by Wnt1 (Figure 7C,D). Interestingly, blockade of PKC in

the absence of Wnt1 was sufficient to reduce Alex3 protein levels.

Moreover, we observed that TPA incubation was sufficient to

prevent the mitochondrial disaggregation phenotype induced by

Wnt1 in HEK293AD cells (Figure 7E,F).

We further examined whether the Alex3(1–45)-GFP and

Alex3(1–106)-GFP constructs, which lack putative PKC phos-

phorylation sites (Figure 1), responded to Wnt1. Co-transfection of

these constructs with Wnt1 or treatment with the PKC inhibitor

Calphostin C did not result in reduced Alex3 protein levels, in

comparison with full-length Alex3-GFP (Figure S7). Together,

these findings suggest a role of PKC in the control and

degradation of Alex3 protein in both Wnt1-dependent and -

independent (e.g., Calphostin C experiments) manners.

Wnt1 Regulates Alex3-dependent Mitochondrial
Dynamics through a PKC-dependent Mechanism

In a previous study we showed that Alex3 overexpression in

HEK293 cells leads to mitochondrial aggregation and reduced

mitochondrial motility [5]. To examine whether Wnt1 alters these

phenotypes, we imaged mitochondrial motility by performing

video recordings (n = 3–4 movies per group). Representative static

images over time and movies are illustrated (Figure 8 and

Supporting Information). Control HEK293T cells displayed a

dense meshwork of mitochondria which moved dynamically,

similar to previous observations [25] (Figure 8A and Video S1).

Overexpression of Alex3 resulted in the progressive aggregation of

individual mitochondria in large clusters near the nucleus. These

organelles exhibited dramatically reduced dynamics and motility

(Figure 8B and Video S2). Cultures transfected with Wnt1 alone or

treated with TPA were first examined to assess that most Alex3-

transfected cells displayed the phenotypes described above. In

agreement with the above data, transfection with Wnt1 cDNA

decreased Alex3 protein levels in HEK293T cells; moreover,

Wnt1 activation increased mitochondrial motility and dynamics,

as observed in the video recordings (Figure 8C and Video S3).

Finally, this reversed mitochondrial phenotype was abolished by

the treatment of HEK293T cells co-transfected with Alex3 and

Wnt1 with the PKC activator TPA. This phenotype again

exhibited large mitochondrial clusters with reduced motility

(Figure 8D and Video S4). Taken together, these findings suggest

that Wnt1 controls not only Alex3 protein levels but also

mitochondrial dynamics and motility in a PKC-dependent

manner.

Discussion

Mitochondrial trafficking and dynamics is essential for cell

respiration and thus for cell viability [26]. Recent studies have

shown that mitochondrial dynamics in neurons (transport and

membrane fusion-fission) is a highly regulated process largely

mediated by Kinesins, the GTPases Mitofusins1–2 and Miro1–2,

and the adaptor protein Trak2 [27–29]. We have recently shown

that Alex3 protein belongs to the KIF5/Miro/Trak2 protein

complex and that its overexpression or knock-down alters

mitochondrial trafficking in neurons [5]. Interestingly, Alex3

belongs to a novel family of proteins that controls the distribution,

aggregation and dynamics of mitochondria and that is evolution-

arily specific for Eutherian mammals [30]. It was predicted that

the Armcx gene cluster arose by retrotransposition from a single

Arm-containing gene (Armc10) exclusive to and present in all

vertebrates and that also regulates mitochondrial trafficking [5]. It

is thus likely that the proteins encoded by the Armcx gene cluster

add further molecular complexity to the regulation of mitochon-

drial trafficking, specifically in the nervous system of higher

vertebrates.

In addition to mitochondrial localization and putative mito-

chondrial targeting sequences, Alex3 protein contains six Arm-like

repeats, arranged in a single DUF463 domain, at the C-terminal

region. On the basis of this enrichment in Arm-like domains, we

propose that Alex3 functions and thus Alex3-dependent mito-

chondrial dynamics are regulated by the Wnt/b-catenin signaling

cascade. The present data show that overexpression of Alex3 leads

to mitochondrial aggregation and decreased mitochondrial

dynamics and trafficking. These effects were reversed upon

Wnt1 treatment, which led to reduced Alex3 protein levels and

concomitantly rendered mitochondrial morphology and dynamics

similar to control phenotypes. In our experimental conditions, a

similar, though less marked effect, was found with co-transfection
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with the receptor Fz2 or the Wnt members Wnt5a and Wnt11.

Interestingly, neither transfection with a constitutively active b-

catenin S33A cDNA or a Dvl2 cDNA, or incubation with GSK3b
enzymatic inhibitors (LiCl and SB216763) had effects on Alex3

protein levels or mitochondrial aggregation. These findings suggest

that these typical components of the Wnt/b-catenin pathway are

not required for the Wnt1-dependent regulation of Alex3-

mitochondrial phenotypes.

In addition to the canonical b-catenin pathway, the Wnt

pathway signals through several non-canonical cascades, including

the kinases CKII and PKC. Originally, Wnts were classified as

canonical (such as Wnt1 or Wnt3a) or non-canonical (Wnt5a or

Wnt11) depending or their capacity to induce secondary axis in

Xenopus embryos [31] or to transform the mammalian epithelial

cells C57MG [32]. However, recent studies have shown that

several Wnts act in both pathways because of the complexity of

cellular contexts. Thus they have specific interactions with various

co-receptors and activate distinct signaling molecules, making it

difficult to keep such a Wnt classification [33,34]. Thus, the

canonical and non-canonical Wnt pathways can be activated by

same Wnt members.

Our results show that the PCP pathway and the downstream

Wnt/Ca2+-dependent effectors CAMKII and Calcineurin do not

affect Alex3 protein levels or Alex3-dependent mitochondrial

morphology. In contrast, inhibition of CKII was shown to increase

Wnt1-dependent Alex3 degradation and, conversely, activation of

PKC abolished Wnt1-dependent Alex3 protein levels and

mitochondrial morphology and dynamics. These data suggest

that these 2 kinases are involved in the regulation of Alex3 protein

levels. Although we cannot confirm direct phosphorylation by

these kinases, this notion is consistent with the prediction of several

CKII and PKC phosphorylation sites in the Alex3 sequence.

Moreover, Alex3 fragments lacking these phosphorylation sites are

not affected by either Wnt1 transfection or by Calphostin C

treatment. Interestingly, up to 5 of these phosphorylation sites fall

within the DUF463 domain, which contains six Arm-like domains

(Figure 1). Another extracellular factor, EGF, has been shown to

phosphorylate Alex3 at residues that are putative targets for CKII

[35]. Our data suggest that Alex3 de-phosphorylation targets

Alex3 protein to a proteasome-independent degradation pathway.

The observation that Alex3 overexpression causes a perinuclear

aggregation similar to that described in mitophagy events [36]

raises the possibility that this protein is degraded by this pathway.

Interestingly, we found that activation of PKC protects Alex3

from Wnt-dependent degradation. Although PKC has been

described to be activated by non-canonical Wnt signaling, our

findings could be explained on the basis of the complex regulation

of this kinase. Several PKC isoenzymes are activated by Wnt

members and are thus translocated to the cell membrane [37]. It is

well known that PKC localizes to several cell compartments

(including mitochondria) and that this differential localization

regulates its activity [38,39]. Our data suggest that PKC

translocates to the cell membrane after Wnt activation, thereby

reducing PKC mitochondrial levels and consequently preventing

PKC/Alex3 interaction, thus enhancing Alex3 degradation. Thus,

although future experiments are required to unravel the exact

signaling cross-talk between PKC and the Alex3 pathway, our

results show very consistent effects of Wnts and PKC on Alex3

protein stability.

The role of PKC in the non-canonical Wnt pathway is unclear.

However, several studies have shown the participation of this

pathway in the regulation of processes such as cell proliferation,

differentiation, and apoptosis [40–44]. Some isozymes of PKC,

such as PKCd, have been related to specific processes such as

convergent extension movements during embryonic gastrulation

[37], and atypical PKCs have been implicated in neuronal

polarization [45]. Finally, Wnt-regulated PKC has been linked to

the progression of cancer, where it may mediate Wnt-dependent

cell motility, invasion and metastasis [46–49]. Given that Alex3

protein was initially described as a putative tumor suppressor

factor and is deleted in several epithelial carcinomas [9], and that

the Wnt/b-catenin pathway plays a prevalent role in cancer

initiation and tumoral growth [20,50], future analyses are required

to unravel the exact contribution of Alex3 to these pathological

processes and the regulation of this protein by the Wnt pathway.

Our results support the notion that Alex3 protein leads to

mitochondrial aggregation and/or tethering and to decreased

mitochondrial trafficking. Although the exact role of mitochon-

drial aggregation is unclear, it is believed that it may serve to

capture these organelles at specific locations that require high

energy consumption and/or high Ca2+ buffering conditions [8,51].

Mitochondrial aggregating phenotypes have been observed after

dysfunction of Miro and Trak2 proteins, which regulate

mitochondrial trafficking. This observation suggests that the

alteration of proteins regulating mitochondrial transport and

trafficking may be one of the mechanisms that results in

aggregation [8,52]. Our data indicate that the mitochondrial

aggregation phenotypes induced by Alex3 are dramatically

regulated by the Wnt signaling cascade. Recent data have

suggested several molecular links between the Wnt pathway and

mitochondrial function. For instance, Wnts have been proposed to

promote mitochondrial biogenesis [53,54], increase ROS produc-

tion [54], and mediate mitochondrial-induced apoptosis [55,56].

Moreover, several downstream Wnt effectors (that interact with

the Blc2/Blc-xL complex) bind to mitochondria [56], and

mitochondrial-associated b-catenin has been proposed to be

related to the response to leukotriene D4, to an increase in

NADPH dehydrogenase activity and ATP/ADP ratio, and to the

regulation of mitochondrial gene expression ROS levels [22].

Finally, mitochondrial APC has been associated with tumor

survival by regulating Bcl2 [23]. Taken together with the above

findings, our data underscores that the Wnt signaling cascade

regulates various and convergent functions of mitochondrial

biology, including the regulation of mitochondrial aggregation,

dynamics and trafficking.

Supporting Information

Figure S1 Alex3 fully co-localizes with MitoTracker and
MitoDsRed. (A) The mitochondrial red marker MitoTracker

(red) and the mitochondrial green marker MitoGFP (green), which

shares the same mitochondrial targeting sequence of MitoDsRed

(from the subunit VIII of human cytochrome c oxidase),

completely co-localized in HEK293T cells. Alex3-GFP (B,C)

and Alex3(1–106)-GFP (D,E) fully co-localized with both

mitochondrial markers, MitoTracker (B,D) and MitoDsRed

(C,E), in HEK293T cells. Scale Bar: 10 mm.

(TIF)

Figure S2 Mitochondrial localization of Alex3 after co-
expression of Wnts and Fz2. (A–F) Mitochondrial localization

of Alex3 (green) in HEK293AD cells after co-expression with the

members of the Wnt/Frizzled signaling pathway used in Figure 3

(Wnt1, Fz2, Wnt5a and Wnt11). Alex3 protein overlaps with the

mitochondrial network labeled with Mitotracker (red). (G–L) High

magnifications of boxed areas shown in (A–F). Nuclei were labeled

with bisbenzimide (blue). Scale bar: 10 mm.

(TIF)
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Figure S3 Alex3 does not colocalize with Frizzled2-HA.
Co-expression of Alex3 (green) and Frizzled2-HA (red) in

HEK293T cells does not show colocalization. Nuclei are stained

in blue (bisbenzimide). Scale Bar: 10 mm.

(TIF)

Figure S4 Recombinant Wnt5a leads to Alex3 degrada-
tion and mitochondrial disaggregation in cells. (A,B)

High-magnification micrographs illustrating that Wnt5a treatment

leads to mitochondrial disaggregation. (C) Histogram showing

percentage of mitochondrial phenotypes in control and Wnt5a-

treated, Alex3-transfected cells. Scale Bar: 20 mm.

(TIF)

Figure S5 Wnt3a treatment does not reverse Alex3
mitochondrial aggregation. Representative Alex3-transfected

cells (green) treated with recombinant Wnt3a show mitochondrial

aggregate phenotypes. b-catenin in red and nuclei in blue

(bisbenzimide). Scale Bar: 10 mm.

(TIF)

Figure S6 Wnt5a and Calphostin C produce Alex3
protein degradation. Overexpressing Alex3 HEK293T cells

treated with Wnt5a or Calphostin C and in presence of

cycloheximide show a reduction in protein levels compared with

cells treated only with cycloheximide.

(TIF)

Figure S7 Alex3-GFP deletion constructs lacking PKC
phosphorylation sites do not respond to Wnt1 and
Calphostin C. (A) Co-transfection of Wnt1 with Alex3-GFP

(1–106) and (1–45) deletion constructs (right panels), which lack

PKC phosphorylation sites, does not lead to Alex3 protein

degradation, in comparison with co-transfection with full-length

Alex3-GFP protein (left panel). (B) Incubation with the PKC

inhibitor Calphostin C leads to degradation of full-length Alex3

(left panel) but not of Alex3-GFP (1–106) or (1–45) deletion

constructs (right panel). The quantification of Alex3-GFP protein

levels is shown at the bottom.

(TIF)

Video S1 Videorecording (7.5 minutes) illustrating mitochon-

drial dynamics in control cells.

(AVI)

Video S2 Videorecording (7.5 minutes) illustrating mitochon-

drial dynamics in cells transfected with Alex3-GFP.

(AVI)

Video S3 Videorecording (7.5 minutes) illustrating mitochon-

drial dynamics in Alex3-GFP/Wnt1.

(AVI)

Video S4 Videorecording (7.5 minutes) illustrating mitochon-

drial dynamics in Alex3-GFP/Wnt1 cells treated with TPA.

(AVI)
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