15 research outputs found

    Quantitative trait loci affecting reproductive phenology in peach

    Get PDF
    Background: The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the perception of cumulative chilling and heat during the bud development. The objective of this work was to identify new quantitative trait loci (QTLs) associated to temperature requirements for bud dormancy release and flowering and to fruit harvest date, in a segregating population of peach. Results: We have identified QTLs for nine traits related to bud dormancy, flowering and fruit harvest in an intraspecific hybrid population of peach in two locations differing in chilling time accumulation. QTLs were located in a genetic linkage map of peach based on single nucleotide polymorphism (SNP) markers for eight linkage groups (LGs) of the peach genome sequence. QTLs for chilling requirements for dormancy release and blooming clustered in seven different genomic regions that partially coincided with loci identified in previous works. The most significant QTL for chilling requirements mapped to LG1, close to the evergrowing locus. QTLs for heat requirement related traits were distributed in nine genomic regions, four of them co-localizing with QTLs for chilling requirement trait. Two major loci in LG4 and LG6 determined fruit harvest time. Conclusions: We identified QTLs associated to nine traits related to the reproductive phenology in peach. A search of candidate genes for these QTLs rendered different genes related to flowering regulation, chromatin modification and hormone signalling. A better understanding of the genetic factors affecting crop phenology might help scientists and breeders to predict changes in genotype performance in a context of global climate change.We thank Matilde Gonzalez for technical assistance. This work was supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)-FEDER (grant no. RTA2007-00060), and the Ministry of Science and Innovation of Spain (grant no. AGL2010-20595).Romeu, J.; Monforte Gilabert, AJ.; Sánchez, G.; Granell Richart, A.; Garcia-Brunton, J.; Badenes, M.; Rios Garcia, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology. 14(52):1-16. https://doi.org/10.1186/1471-2229-14-52S1161452Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12(5), 217-223. doi:10.1016/j.tplants.2007.03.012Coville, F. V. (1920). The Influence of Cold in Stimulating the Growth of Plants. Proceedings of the National Academy of Sciences, 6(7), 434-435. doi:10.1073/pnas.6.7.434Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3149-3160. doi:10.1098/rstb.2010.0142Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16(8), 412-416. doi:10.1016/j.tplants.2011.05.001Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 107(51), 22151-22156. doi:10.1073/pnas.1012490107Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., … van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684-692. doi:10.1016/j.tplants.2010.09.008Rohde, A., Storme, V., Jorge, V., Gaudet, M., Vitacolonna, N., Fabbrini, F., … Bastien, C. (2010). Bud set in poplar - genetic dissection of a complex trait in natural and hybrid populations. New Phytologist, 189(1), 106-121. doi:10.1111/j.1469-8137.2010.03469.xFabbrini, F., Gaudet, M., Bastien, C., Zaina, G., Harfouche, A., Beritognolo, I., … Sabatti, M. (2012). Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC Plant Biology, 12(1), 47. doi:10.1186/1471-2229-12-47Celton, J.-M., Martinez, S., Jammes, M.-J., Bechti, A., Salvi, S., Legave, J.-M., & Costes, E. (2011). Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytologist, 192(2), 378-392. doi:10.1111/j.1469-8137.2011.03823.xQuilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-zDirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38Olukolu, B. A., Trainin, T., Fan, S., Kole, C., Bielenberg, D. G., Reighard, G. L., … Holland, D. (2009). Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniacaL.). Genome, 52(10), 819-828. doi:10.1139/g09-050Fan, S., Bielenberg, D. G., Zhebentyayeva, T. N., Reighard, G. L., Okie, W. R., Holland, D., & Abbott, A. G. (2009). Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist, 185(4), 917-930. doi:10.1111/j.1469-8137.2009.03119.xJiménez, S., Li, Z., Reighard, G. L., & Bielenberg, D. G. (2010). Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biology, 10(1), 25. doi:10.1186/1471-2229-10-25Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668Leida, C., Terol, J., Marti, G., Agusti, M., Llacer, G., Badenes, M. L., & Rios, G. (2010). Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiology, 30(5), 655-666. doi:10.1093/treephys/tpq008Leida, C., Conesa, A., Llácer, G., Badenes, M. L., & Ríos, G. (2011). Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist, 193(1), 67-80. doi:10.1111/j.1469-8137.2011.03863.xHolec, S., & Berger, F. (2011). Polycomb Group Complexes Mediate Developmental Transitions in Plants. Plant Physiology, 158(1), 35-43. doi:10.1104/pp.111.186445Pandey, R. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 30(23), 5036-5055. doi:10.1093/nar/gkf660Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586Jiménez, S., Lawton-Rauh, A. L., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology, 9(1), 81. doi:10.1186/1471-2229-9-81Li, Z., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany, 60(12), 3521-3530. doi:10.1093/jxb/erp195Jiménez, S., Reighard, G. L., & Bielenberg, D. G. (2010). Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Molecular Biology, 73(1-2), 157-167. doi:10.1007/s11103-010-9608-5Yamane, H., Ooka, T., Jotatsu, H., Hosaka, Y., Sasaki, R., & Tao, R. (2011). Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. Journal of Experimental Botany, 62(10), 3481-3488. doi:10.1093/jxb/err028Leida, C., Conejero, A., Arbona, V., Gómez-Cadenas, A., Llácer, G., Badenes, M. L., & Ríos, G. (2012). Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression. PLoS ONE, 7(5), e35777. doi:10.1371/journal.pone.0035777Horvath, D. P., Sung, S., Kim, D., Chao, W., & Anderson, J. (2010). Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73(1-2), 169-179. doi:10.1007/s11103-009-9596-5Sasaki, R., Yamane, H., Ooka, T., Jotatsu, H., Kitamura, Y., Akagi, T., & Tao, R. (2011). Functional and Expressional Analyses of PmDAM Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 157(1), 485-497. doi:10.1104/pp.111.181982Hemming, M. N., & Trevaskis, B. (2011). Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Science, 180(3), 447-453. doi:10.1016/j.plantsci.2010.12.001He, Y. (2012). Chromatin regulation of flowering. Trends in Plant Science, 17(9), 556-562. doi:10.1016/j.tplants.2012.05.001Santamaría, M., Hasbún, R., Valera, M., Meijón, M., Valledor, L., Rodríguez, J. L., … Rodríguez, R. (2009). Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. Journal of Plant Physiology, 166(13), 1360-1369. doi:10.1016/j.jplph.2009.02.014Santamaría, M. E., Rodríguez, R., Cañal, M. J., & Toorop, P. E. (2011). Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Annals of Botany, 108(3), 485-498. doi:10.1093/aob/mcr185Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.xHorvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science, 8(11), 534-540. doi:10.1016/j.tplants.2003.09.013Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., … Rohde, A. (2007). A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar. The Plant Cell, 19(8), 2370-2390. doi:10.1105/tpc.107.052811Melzer, S., Kampmann, G., Chandler, J., & Apel, K. (1999). FPF1 modulates the competence to flowering in Arabidopsis. The Plant Journal, 18(4), 395-405. doi:10.1046/j.1365-313x.1999.00461.xSchubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., & Goodrich, J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. The EMBO Journal, 25(19), 4638-4649. doi:10.1038/sj.emboj.7601311Zemach, A., Kim, M. Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., … Zilberman, D. (2013). The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 153(1), 193-205. doi:10.1016/j.cell.2013.02.033Sridha, S., & Wu, K. (2006). Identification ofAtHD2Cas a novel regulator of abscisic acid responses in Arabidopsis. The Plant Journal, 46(1), 124-133. doi:10.1111/j.1365-313x.2006.02678.xKim, D.-H., & Sung, S. (2010). The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proceedings of the National Academy of Sciences, 107(39), 17029-17034. doi:10.1073/pnas.1010834107Jiang, D., Kong, N. C., Gu, X., Li, Z., & He, Y. (2011). Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development. PLoS Genetics, 7(3), e1001330. doi:10.1371/journal.pgen.1001330Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nature Genetics, 43(7), 715-719. doi:10.1038/ng.854Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., … Wu, K. (2011). HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. Plant Physiology, 156(1), 173-184. doi:10.1104/pp.111.174417Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-nYang, Z., Tian, L., Latoszek-Green, M., Brown, D., & Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 58(4), 585-596. doi:10.1007/s11103-005-7294-5Bonghi, C., Trainotti, L., Botton, A., Tadiello, A., Rasori, A., Ziliotto, F., … Ramina, A. (2011). A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology, 11(1), 107. doi:10.1186/1471-2229-11-107Wang, A., Tan, D., Takahashi, A., Zhong Li, T., & Harada, T. (2007). MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany, 58(13), 3743-3748. doi:10.1093/jxb/erm224Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., … Seymour, G. B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38(8), 948-952. doi:10.1038/ng1841Pirona, R., Eduardo, I., Pacheco, I., Da Silva Linge, C., Miculan, M., Verde, I., … Rossini, L. (2013). Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 13(1), 166. doi:10.1186/1471-2229-13-166Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., & Takahashi, H. (2006). Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. The Plant Cell, 18(11), 3235-3251. doi:10.1105/tpc.106.046458Seymour, G., Poole, M., Manning, K., & King, G. J. (2008). Genetics and epigenetics of fruit development and ripening. Current Opinion in Plant Biology, 11(1), 58-63. doi:10.1016/j.pbi.2007.09.003Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.7

    The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

    Get PDF
    Background: The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F-1 population segregating largely for fruit traits. Results: Linkage maps were constructed using the IPSC peach 9 K Infinium (R) II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions: The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones.GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria, Argentina). HS-SPME-GC-MS analyses were performed at the Metabolomic lab facilities at the IBMCP (CSIC) in Spain. This project has been funded by the Ministry of Economy and Competitivity grant AGL2010-20595.Sánchez, G.; Martinez, J.; Romeu, J.; Garcia, J.; Monforte Gilabert, AJ.; Badenes, M.; Granell Richart, A. (2014). The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology. 14(137):1-16. https://doi.org/10.1186/1471-2229-14-137S11614137Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459gGreger, V., & Schieberle, P. (2007). Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 55(13), 5221-5228. doi:10.1021/jf0705015Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172eAubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153iXI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.xBrandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24Sánchez, G., Venegas-Calerón, M., Salas, J. J., Monforte, A., Badenes, M. L., & Granell, A. (2013). An integrative «omics» approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics, 14(1), 343. doi:10.1186/1471-2164-14-343Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086Romeu, J. F., Monforte, A. J., Sánchez, G., Granell, A., García-Brunton, J., Badenes, M. L., & Ríos, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology, 14(1), 52. doi:10.1186/1471-2229-14-52Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. (2008). QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24(5), 721-723. doi:10.1093/bioinformatics/btm494Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379Quilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-zDirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W., & Arus, P. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, 101(26), 9891-9896. doi:10.1073/pnas.030793710

    Elaboració d'una guia sobre aprenentatge cooperatiu a la Universitat de Girona

    Get PDF
    L’any 2009, l’Institut de Ciències de l’Educació Josep Pallach de la Universitat de Girona va impulsar la creació de diverses Xarxes d’Innovació Docent (XID). Aquestes xarxes agrupen professors de disciplines diverses que volen compartir experiències relatives a la millora docent. Una d’aquestes xarxes és la relativa a l’Aprenentatge Cooperatiu (XIDAC). Es compon de vuit professors que utilitzen aquest mètode d’aprenentatge a la seva docència. Un dels seus objectius és produir una guia o petit manual sobre aprenentatge cooperatiu (AC) a la UdG. Es tracta d’orientar els professors que vulguin posar- lo en pràctica, o que ja ho estiguin fent i necessitin un material de suport. A la present comunicació es descriu el procés d’elaboració d’aquesta guia. En primer lloc, s’exposen característiques de la UdG que poden determinarne en algun sentit el perfil i continguts. Després, es resumeixen els resultats d’entrevistes amb professors que apliquen l’AC tot i no pertànyer a la Xarxa. A continuació, es resumeixen els resultats d’una enquesta elaborada al professorat de la UdG (actualment està en fase de resposta). Amb posterioritat, es fa una presentació general de la futura guia i es descriu breument un exemple de fitxa d’activitat d’AC. Finalment, es fa referència al procés de debat obert de part d’aquests continguts a través d’una pàgina web, per tal de recollir punts de vista externs i millorar la proposta.Peer Reviewe

    Gene expression analysis of chilling requirements for flower bud break in peach

    No full text
    With 2 figures and 2 tables Dormancy has been defined as the inability to initiate growth from meristem under favourable environmental conditions. The length of dormancy is a genotype-specific trait that limits the climatic adaptability of temperate crops, as peach. A better knowledge of the genes involved in dormancy may provide genetic tools for an early assessment of the trait in breeding programmes. Recent studies on the molecular aspects of dormancy provided an initial description of candidate genes involved in bud dormancy maintenance and release in peach. In this paper, we compare the chilling requirement for dormancy release of five peach cultivars with the expression of five genes and ESTs related to bud dormancy: DAM5, DB396 (ppa007606m), DB247 (ppa012188m), SB280 (ppa006974m) and PpB63 (ppa008309m). Results indicated that gene expression analysis could contribute to estimate the chilling requirement for dormancy release of new cultivars. \ua9 2012 Blackwell Verlag GmbH

    Elaboració d'una guia sobre aprenentatge cooperatiu a la Universitat de Girona

    No full text
    L’any 2009, l’Institut de Ciències de l’Educació Josep Pallach de la Universitat de Girona va impulsar la creació de diverses Xarxes d’Innovació Docent (XID). Aquestes xarxes agrupen professors de disciplines diverses que volen compartir experiències relatives a la millora docent. Una d’aquestes xarxes és la relativa a l’Aprenentatge Cooperatiu (XIDAC). Es compon de vuit professors que utilitzen aquest mètode d’aprenentatge a la seva docència. Un dels seus objectius és produir una guia o petit manual sobre aprenentatge cooperatiu (AC) a la UdG. Es tracta d’orientar els professors que vulguin posar- lo en pràctica, o que ja ho estiguin fent i necessitin un material de suport. A la present comunicació es descriu el procés d’elaboració d’aquesta guia. En primer lloc, s’exposen característiques de la UdG que poden determinarne en algun sentit el perfil i continguts. Després, es resumeixen els resultats d’entrevistes amb professors que apliquen l’AC tot i no pertànyer a la Xarxa. A continuació, es resumeixen els resultats d’una enquesta elaborada al professorat de la UdG (actualment està en fase de resposta). Amb posterioritat, es fa una presentació general de la futura guia i es descriu breument un exemple de fitxa d’activitat d’AC. Finalment, es fa referència al procés de debat obert de part d’aquests continguts a través d’una pàgina web, per tal de recollir punts de vista externs i millorar la proposta.Peer Reviewe
    corecore