61 research outputs found
Potential New Diagnostic Tool for Alzheimer's Disease Using a Linear Discriminant Function for Fourier Domain Optical Coherence Tomography
PURPOSE. We calculated and validated a linear discriminant function (LDF) for Fourier domain optical coherence tomography (OCT) to improve the diagnostic ability of retinal and retinal nerve fiber layer (RNFL) thickness parameters in the detection of Alzheimer's disease (AD). METHODS. We enrolled AD patients (n ¼ 151) and age-matched, healthy subjects (n ¼ 61). The Cirrus and Spectralis OCT systems were used to obtain retinal measurements and circumpapillary RNFL thickness for each participant. An LDF was calculated using all retinal and RNFL OCT measurements. Receiver operating characteristic (ROC) curves were plotted and compared among the LDF and the standard parameters provided by OCT devices. Sensitivity and specificity were used to evaluate diagnostic performance. A validating set was used in an independent population to test the performance of the LDF. RESULTS. The optimal function was calculated using the RNFL thickness provided by Spectralis OCT, using the 768 points registered during peripapillary scan acquisition (grouped to obtain 24 uniformly divided locations): 18.325 þ 0.056 3 (3158-3308) À 0.122 3 (3008-3158) À 0.041 3 (2858-3008) þ 0.091 3 (2558-2708) þ 0.041 3 (2258-2408) þ 0.183 3 (1958-2108) À 0.108 3 (1508-1658) À 0.092 3 (758-908) þ 0.051 3 (308-458). The largest area under the ROC curve was 0.967 for the LDF. At 95% fixed specificity, the LDF yielded the highest sensitivity values. CONCLUSIONS. Measurements of RNFL thickness obtained with the Spectralis OCT device differentiated between healthy and AD individuals. Based on the area under the ROC curve, the LDF was a better predictor than any single parameter
Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure
BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease
Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator
none41siTo study the impact of genotype on the performance of the 2019 risk model for arrhythmogenic right ventricular cardiomyopathy (ARVC).Protonotarios, Alexandros; Bariani, Riccardo; Cappelletto, Chiara; Pavlou, Menelaos; García-García, Alba; Cipriani, Alberto; Protonotarios, Ioannis; Rivas, Adrian; Wittenberg, Regitze; Graziosi, Maddalena; Xylouri, Zafeirenia; Larrañaga-Moreira, José M; de Luca, Antonio; Celeghin, Rudy; Pilichou, Kalliopi; Bakalakos, Athanasios; Lopes, Luis Rocha; Savvatis, Konstantinos; Stolfo, Davide; Dal Ferro, Matteo; Merlo, Marco; Basso, Cristina; Freire, Javier Limeres; Rodriguez-Palomares, Jose F; Kubo, Toru; Ripoll-Vera, Tomas; Barriales-Villa, Roberto; Antoniades, Loizos; Mogensen, Jens; Garcia-Pavia, Pablo; Wahbi, Karim; Biagini, Elena; Anastasakis, Aris; Tsatsopoulou, Adalena; Zorio, Esther; Gimeno, Juan R; Garcia-Pinilla, Jose Manuel; Syrris, Petros; Sinagra, Gianfranco; Bauce, Barbara; Elliott, Perry MProtonotarios, Alexandros; Bariani, Riccardo; Cappelletto, Chiara; Pavlou, Menelaos; García-García, Alba; Cipriani, Alberto; Protonotarios, Ioannis; Rivas, Adrian; Wittenberg, Regitze; Graziosi, Maddalena; Xylouri, Zafeirenia; Larrañaga-Moreira, José M; de Luca, Antonio; Celeghin, Rudy; Pilichou, Kalliopi; Bakalakos, Athanasios; Lopes, Luis Rocha; Savvatis, Konstantinos; Stolfo, Davide; Dal Ferro, Matteo; Merlo, Marco; Basso, Cristina; Freire, Javier Limeres; Rodriguez-Palomares, Jose F; Kubo, Toru; Ripoll-Vera, Tomas; Barriales-Villa, Roberto; Antoniades, Loizos; Mogensen, Jens; Garcia-Pavia, Pablo; Wahbi, Karim; Biagini, Elena; Anastasakis, Aris; Tsatsopoulou, Adalena; Zorio, Esther; Gimeno, Juan R; Garcia-Pinilla, Jose Manuel; Syrris, Petros; Sinagra, Gianfranco; Bauce, Barbara; Elliott, Perry
Rationale and design of the ESC Heart Failure III Registry - Implementation and discovery
AIMS
Heart failure outcomes remain poor despite advances in therapy. The European Society of Cardiology Heart Failure III Registry (ESC HF III Registry) aims to characterize HF clinical features and outcomes and to assess implementation of guideline-recommended therapy in Europe and other ESC affiliated countries.
METHODS
Between 1 November 2018 and 31 December 2020, 10 162 patients with chronic or acute/worsening HF with reduced, mildly reduced, or preserved ejection fraction were enrolled from 220 centres in 41 European or ESC affiliated countries. The ESC HF III Registry collected data on baseline characteristics (hospital or clinic presentation), hospital course, diagnostic and therapeutic decisions in hospital and at the clinic visit; and on outcomes at 12-month follow-up. These data include demographics, medical history, physical examination, biomarkers and imaging, quality of life, treatments, and interventions - including drug doses and reasons for non-use, and cause-specific outcomes.
CONCLUSION
The ESC HF III Registry will provide comprehensive and unique insight into contemporary HF characteristics, treatment implementation, and outcomes, and may impact implementation strategies, clinical discovery, trial design, and public policy
Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN Gene.
Background: Truncating variants in the TTN gene (TTNtv) are the commonest cause of heritable dilated cardiomyopathy. This study aimed to study the phenotypes and outcomes of TTNtv carriers.
Methods: Five hundred thirty-seven individuals (61% men; 317 probands) with TTNtv were recruited in 14 centers (372 [69%] with baseline left ventricular systolic dysfunction [LVSD]). Baseline and longitudinal clinical data were obtained. The primary end point was a composite of malignant ventricular arrhythmia and end-stage heart failure. The secondary end point was left ventricular reverse remodeling (left ventricular ejection fraction increase by ≥10% or normalization to ≥50%).
Results: Median follow-up was 49 (18–105) months. Men developed LVSD more frequently and earlier than women (45±14 versus 49±16 years, respectively; P=0.04). By final evaluation, 31%, 45%, and 56% had atrial fibrillation, frequent ventricular ectopy, and nonsustained ventricular tachycardia, respectively. Seventy-six (14.2%) individuals reached the primary end point (52 [68%] end-stage heart failure events, 24 [32%] malignant ventricular arrhythmia events). Malignant ventricular arrhythmia end points most commonly occurred in patients with severe LVSD. Male sex (hazard ratio, 1.89 [95% CI, 1.04–3.44]; P=0.04) and left ventricular ejection fraction (per 10% decrement from left ventricular ejection fraction, 50%; hazard ratio, 1.63 [95% CI, 1.30–2.04]; P<0.001) were independent predictors of the primary end point. Two hundred seven of 300 (69%) patients with LVSD had evidence of left ventricular reverse remodeling. In a subgroup of 29 of 74 (39%) patients with initial left ventricular reverse remodeling, there was a subsequent left ventricular ejection fraction decrement. TTNtv location was not associated with statistically significant differences in baseline clinical characteristics, left ventricular reverse remodeling, or outcomes on multivariable analysis (P=0.07).
Conclusions: TTNtv is characterized by frequent arrhythmia, but malignant ventricular arrhythmias are most commonly associated with severe LVSD. Male sex and LVSD are independent predictors of outcomes. Mutation location does not impact clinical phenotype or outcomes.pre-print1,66 M
Emery-Dreifuss Muscular Dystrophy 1 is associated with high risk of malignant ventricular arrhythmias and end-stage heart failure.
BACKGROUND AND AIMS
Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants.
METHODS
Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC).
RESULTS
Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09).
CONCLUSIONS
Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.The work reported in this publication was funded by: a British Heart
Foundation Clinical Research Training Fellowship to D.E.C. (FS/CRTF/
20/24022); a British Heart Foundation Clinical Research Training fellowship to A.P. (FS/18/82/34024); The Ministry of Health, Italy, project
RC-2022-2773270 to E.B.; the National Institutes of Health (NIH)
(R01HL69071, R01HL116906, R01HL147064, NIH/NCATS UL1
TR002535, and UL1 TR001082) to L.M.; and support from the Rose
Foundation for K.M.S
Penetrance of Dilated Cardiomyopathy in Genotype-Positive Relatives
BACKGROUND Disease penetrance in genotype -positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS The authors evaluated 779 G+ patients (age 35.8 +/- 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN ) without DCM followed at 25 Spanish centers. RESULTS After a median follow-up of 37.1 months (Q1 -Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person -years; 95% CI: 2.3-3.5 per 100 person -years). DCM penetrance and age at DCM onset was different according to underlying gene group (log -rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1 -year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end -diastolic diameter (HR per 1 -mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identi fied late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end -diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM. (J Am Coll Cardiol 2024;83:1640 -1651) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy
BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.This work was supported in part by grants from the Instituto de Salud Carlos III (ISCIII) (PI15/01551, PI17/01941 and CB16/11/00432 to P.G-P. and L.A-P.), the Spanish Ministry of Economy and Competitiveness (SAF2015-71863-REDT to P.G-P.), the John S. LaDue Memorial Fellowship at Harvard Medical School (Y.K.), Wellcome Trust (107469/Z/15/Z to J.S.W.), Medical Research Council (intramural awards to S.A.C. and J.S.W; MR/M003191/1 to U.T), National Institute for Health Research Biomedical Research Unit at the Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London (P.J.B., S.A.C., J.S.W.), National Institute for Health Research Biomedical Research Centre at Imperial College London Healthcare National Health Service Trust and Imperial College London (D.O.R., S.A.C., S.P., J.S.W.), Sir Henry Wellcome Postdoctoral Fellowship (C.N.T.), Rosetrees and Stoneygate Imperial College Research Fellowship (N.W.), Fondation Leducq (S.A.C., C.E.S., J.G.S.), Health Innovation Challenge Fund award from the Wellcome Trust and Department of Health (UK; HICF-R6-373; S.A.C., P.J.B., J.S. W.), the British Heart Foundation (NH/17/1/32725 to D.O.R.; SP/10/10/28431 to S.A.C), Alex’s Lemonade Stand Foundation (K.G.), National Institutes of Health (R.A.: U01CA097452, R01CA133881, and U01CA097452; Z.A.: R01 HL126797; B.K.: R01 HL118018 and K23-HL095661; J.G.S. and C.E.S.: 5R01HL080494, R01HL084553), and the Howard Hughes Medical Institute (C.E.S.). The Universitario Puerta de Hierro and Virgen de la Arrixaca Hospitals are members of the European Reference Network on Rare and Complex Diseases of the Heart (Guard-Heart; http://guard-heart.ern-net.eu). This publication includes independent research commissioned by the Health Innovation Challenge Fund (HICF), a parallel funding partnership between the Department of Health and Wellcome Trust. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Ministry of Economy, Industry and Competitiveness and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Grants from ISCIII and the Spanish Ministry of Economy and Competitiveness are supported by the Plan Estatal de I+D+I 2013-2016 – European Regional Development Fund (FEDER) “A way of making Europe”.S
Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications
Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions
Natural History of MYH7-Related Dilated Cardiomyopathy
BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation
- …