1,527 research outputs found
Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks
(Abridged) Many classes of active galactic nuclei (AGN) have been defined
entirely throughout optical wavelengths while the X-ray spectra have been very
useful to investigate their inner regions. However, optical and X-ray results
show many discrepancies that have not been fully understood yet. The aim of
this paper is to study the "synapses" between the X-ray and optical
classifications.
For the first time, the new EFLUXER task allowed us to analyse broad band
X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting
using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn
spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB),
transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).
The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and
SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components.
We suggest that this is related to a large degree of obscuration at X-rays. The
S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes
have similar average X-ray spectra within each class, but these average spectra
can be distinguished from class to class. The S2 (L1.8) class is linked to the
S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2,
T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class
albeit with larger fractions of SB-like component. This SB-like component is
the contribution of the star-formation in the host galaxy, which is large when
the AGN is weak. An AGN-like component seems to be present in the vast majority
of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like
component. This trained ANN could be used to infer optical properties from
X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only
in the full version of the paper here:
https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd
ALMA reveals the feeding of the Seyfert 1 nucleus in NGC 1566
We report ALMA observations of CO(3-2) emission in the Seyfert 1 galaxy NGC
1566, at a spatial resolution of 25 pc. Our aim is to investigate the
morphology and dynamics of the gas inside the central kpc, and to probe nuclear
fueling and feedback phenomena. NGC 1566 has a nuclear bar of 1.7 kpc radius
and a conspicuous grand design spiral starting from this radius. The ALMA field
of view, of diameter 0.9 kpc, lies well inside the nuclear bar and reveals a
molecular trailing spiral structure from 50 to 300~pc in size, which is
contributing to fuel the nucleus, according to its negative gravity torques.
The spiral starts with a large pitch angle from the center and then winds up
in a pseudo-ring at the inner Lindblad resonance (ILR) of the nuclear bar.
This is the first time that a trailing spiral structure is clearly seen
driving the gas inwards inside the ILR ring of the nuclear bar. This phenomenon
shows that the massive central black hole has a significant dynamical influence
on the gas, triggering its fueling.
The gaseous spiral is well correlated with the dusty spiral seen through
extinction in HST images, and also with a spiral feature emitting 0.87mm
continuum. This continuum emission must come essentially from cold dust heated
by the interstellar radiation field. The HCN(4-3) and HCO+(4-3) lines were
simultaneously mapped and detected in the nuclear spiral. The HCO+(4-3) line is
3 times stronger than the HCN(4-3), as expected when star formation excitation
dominates over active galactic nucleus (AGN) heating. The CO(3-2)/HCO+(4-3)
integrated intensity ratio is \sim 100.
The molecular gas is in remarkably regular rotation, with only slight
non-circular motions at the periphery of the nuclear spiral arms. These
perturbations are quite small, and no outflow nor AGN feedback is detected.Comment: 11 pages, 16 figures, accepted in Astronomy and Astrophysic
ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433
We report ALMA observations of CO(3-2) emission in the Seyfert 2
double-barred galaxy NGC1433, at the unprecedented spatial resolution of
0.5"=24 pc. Our aim is to probe AGN feeding and feedback phenomena through the
morphology and dynamics of the gas inside the central kpc. The CO map, which
covers the whole nuclear region (nuclear bar and ring), reveals a nuclear
gaseous spiral structure, inside the nuclear ring encircling the nuclear
stellar bar.
This gaseous spiral is well correlated with the dusty spiral seen in Hubble
Space Telescope images. The nuclear spiral winds up in a pseudo-ring at 200 pc
radius, which might correspond to the inner ILR. Continuum emission is detected
at 0.87 mm only at the very centre, and its origin is more likely thermal dust
emission than non-thermal emission from the AGN. It might correspond to the
molecular torus expected to exist in this Seyfert 2 galaxy. The HCN(4-3) and
HCO+(4-3) lines were observed simultaneously, but only upper limits are
derived, with a ratio to the CO(3-2) line lower than 1/60 at 3sigma, indicating
a relatively low abundance of very dense gas. The kinematics of the gas over
the nuclear disk reveal rather regular rotation only slightly perturbed by
streaming motions due to the spiral; the primary and secondary bars are too
closely aligned with the galaxy major or minor axis to leave a signature in the
projected velocities. Near the nucleus, there is an intense high-velocity CO
emission feature redshifted to 200 km/s (if located in the plane), with a
blue-shifted counterpart, at 2" (100 pc) from the centre. While the CO spectra
are quite narrow in the centre, this wide component is interpreted as an
outflow involving a molecular mass of 3.6 10^6 Mo and a flow rate 7 Mo/yr. The
flow could be in part driven by the central star formation, but is mainly
boosted by the AGN through its wind or radio jets.Comment: 11 pages, 9 figures, Accepted in Astronomy and Astrophysic
Monolithic All-Solid-State High-Voltage Li-Metal Thin-Film Rechargeable Battery
The substitution of an organic liquid electrolyte with lithium-conducting solid materials is a promising approach to overcome the limitations associated with conventional lithium-ion batteries. These constraints include a reduced electrochemical stability window, high toxicity, flammability, and the formation of lithium dendrites. In this way, all-solid-state batteries present themselves as ideal candidates for improving energy density, environmental friendliness, and safety. In particular, all-solid-state configurations allow the introduction of compact, lightweight, high-energy-density batteries, suitable for low-power applications, known as thin-film batteries. Moreover, solid electrolytes typically offer wide electrochemical stability windows, enabling the integration of high-voltage cathodes and permitting the fabrication of higher-energy-density batteries. A high-voltage, all-solid-state lithium-ion thin-film battery composed of LiNi0.5Mn1.5O4 cathode, a LiPON solid electrolyte, and a lithium metal anode has been deposited layer by layer on low-cost stainless-steel current collector substrates. The structural and electrochemical properties of each electroactive component of the battery had been analyzed separately prior to the full cell implementation. In addition to a study of the internal solid–solid interface, comparing them was done with two similar cells assembled using conventional lithium foil, one with thin-film solid electrolyte and another one with thin-film solid electrolyte plus a droplet of LP30 liquid electrolyte. The thin-film all-solid state cell developed in this work delivered 80.5 mAh g–1 in the first cycle at C/20 and after a C-rate test of 25 cycles at C/10, C/5, C/2, and 1C and stabilized its capacity at around 70 mAh g–1 for another 12 cycles prior to the start of its degradation. This cell reached gravimetric and volumetric energy densities of 333 Wh kg–1 and 1,212 Wh l–1, respectively. Overall, this cell showed a better performance than its counterparts assembled with Li foil, highlighting the importance of the battery interface control
Resolving the age bimodality of galaxy stellar populations on kpc scales
Galaxies in the local Universe are known to follow bimodal distributions in
the global stellar populations properties. We analyze the distribution of the
local average stellar-population ages of 654,053 sub-galactic regions resolved
on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the
CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging.
We find a bimodal local-age distribution, with an old and a young peak
primarily due to regions in early-type galaxies and star-forming regions of
spirals, respectively. Within spiral galaxies, the older ages of bulges and
inter-arm regions relative to spiral arms support an internal age bimodality.
Although regions of higher stellar-mass surface-density, mu*, are typically
older, mu* alone does not determine the stellar population age and a bimodal
distribution is found at any fixed mu*. We identify an "old ridge" of regions
of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age
increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as
regions containing only old stars, and the latter as regions where the relative
contamination of old stellar populations by young stars decreases as mu*
increases. The reason why this bimodal age distribution is not inconsistent
with the unimodal shape of the cosmic-averaged star-formation history is that
i) the dominating contribution by young stars biases the age low with respect
to the average epoch of star formation, and ii) the use of a single average age
per region is unable to represent the full time-extent of the star-formation
history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte
Spotting the differences between active and non-active twin galaxies on kpc-scales. A pilot study
We present a pilot study aimed to identify large-scale galaxy properties that
could play a role in activating a quiescent nucleus. To do so, we compare the
properties of two isolated nearby active galaxies and their non-active twins
selected from the Calar Alto Legacy Integral Field Area (CALIFA) survey. This
pilot sample includes two barred and two unbarred galaxies. We characterise the
stellar and ionised gas kinematics and also their stellar content. We obtain
simple kinematic models by fitting the full stellar and ionised gas velocity
fields and just the approaching/receding sides. We find that the analysed
active galaxies present lopsided disks and higher values of the global stellar
angular momentum () than their non-active twins. This could be
indicating that the stellar disks of the AGN gained angular momentum from the
inflowing gas that triggered the nuclear activity. The inflow of gas could have
been produced by a twisted disk instability in the case of the unbarred AGN,
and by the bar in the case of the barred AGN. In addition, we find that the
central regions of the studied active galaxies show older stellar populations
than their non-active twins. The next step is to statistically explore these
galaxy properties in a larger sample of twin galaxies.Comment: 24 pages, 24 figures. Accepted by MNRA
Household packaging waste management
Household packaging waste (HPW) has an important environmental impact and economic relevance. Thus there are networks of collection points (named “ecopontos” in Portugal) where HPW may be deposited for collection by waste management companies. In order to optimize HPW logistics, accurate estimates of the waste generation rates are needed to calculate the number of collections required for each ecoponto in a given period of time. The most important factors to estimate HPW generation rates are linked to the characteristics of the population and the social and economic activities around each ecoponto location. We developed multiple linear regression models and artificial neural networks models to forecast the number of collections per year required for each location. For operational short term planning purposes, these forecasts need to be adjusted for seasonality in order to determine the required number of collections for the relevant planning period. In this paper we describe the methodology used to obtain these forecasts.This research has been partially supported by COMPETE: POCI-01-0145-FEDER007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio
Eicosapentaenoic acid prevents salt sensitivity in diabetic rats and decreases oxidative stress
Objectives: Salt sensitivity (SS) is associated with increased cardiovascular risk in patients with Type 2 diabetes mellitus (T2-DM) due to an increase in renal oxidation. ω-3 polyunsaturated fatty acids have shown antioxidant effects, but a typical Western diet contains limited content. In particular, ω-3 polyunsaturated fatty acids are able to activate nuclear factor erythroid 2-related factor 2 (Nrf-2) to prevent diabetes mellitus–related complications by mitigating oxidative stress. Therefore, we hypothesized that eicosapentaenoic acid (EPA; ω-3) modulates SS in rats with T2-DM by decreasing renal oxidative stress via Nrf-2 activation and enhancing the antiinflammatory response via interleukin (IL) 6 modulation. Methods: Three-month-old male rats (n = 40) were fed with a Normal Na-diet (NNaD) and randomly selected into four groups: Healthy Wistar nondiabetic rats (Wi), diabetic controls (eSS), arachidonic acid-treated eSS (AA; ω-6), and EPA-treated eSS (ω-3). After 1 year, rats were placed in metabolic cages for 7 d and fed a NNaD, followed by a 7-d period with a High Na-diet (HNaD). Systolic blood pressure, body weight, serum IL-6 and reactive oxygen species (ROS) levels were determined at the end of each 7-d period. Glycated hemoglobin (HbA1c), triacylglycerol, creatinine, and cholesterol levels were determined. ROS levels and Nrf-2 expression in kidney lysates were also assayed. Histologic changes were evaluated. A t test or analysis of variance was used for the statistical analysis. Results: After a HNaD, systolic blood pressure increased in both the control eSS and AA groups, but not in the EPA and Wi groups. However, HbA1c levels remained unchanged by the treatments, which suggests that the observed beneficial effect was independent of HbA1c levels. The IL-6 levels were higher in the eSS and AA groups, but remained unaltered in EPA and Wi rats after a HNaD diet. Interestingly, EPA protected against serum ROS in rats fed the HNaD, whereas AA did not. In kidney lysates, ROS decreased significantly in the EPA group compared with the eSS group, and Nrf-2 expression was consistently higher compared with the AA and eSS groups. Diabetic rats presented focal segmental sclerosis, adherence to Bowman capsule, and mild-to-moderate interstitial fibrosis. EPA and AA treatment prevented kidney damage. Conclusions: An adequate ω3-to-ω6 ratio prevents SS in diabetic rats by a mechanism that is independent of glucose metabolism but associated with the prevention of renal oxidative stress generation. These data suggest that EPA antioxidant properties may prevent the development of hypertension or kidney damage.Fil: Vara Messler, Marianela. UniversitĂ di Torino; Italia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Mukdsi, Jorge Humberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Osieki, Natalia I.. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Medicina. Instituto de BiologĂa Celular; ArgentinaFil: Benizio, Evangelina Leticia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Repossi Marquez, Pablo Gaston. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Ajayi, Ebenezer Idowu O. Osun State University; Nigeria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂn Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂn Ferreyra; ArgentinaFil: Garcia, Nestor Horacio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentin
LiNi0.5Mn1.5O4 Thin Films Grown by Magnetron Sputtering under Inert Gas Flow Mixtures as High-Voltage Cathode Materials for Lithium-Ion Batteries
Delivering a commercial high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) cathode electrode for Li-ion batteries would result in a significant step forward in terms of energy density. However, the structural ordering of the spinel and particle size have considerable effects on the cathode material's cyclability and rate capability, which are crucial challenges to address. Here, a novel mid-frequency alternating current dual magnetron sputtering method was presented, using different Ar-N-2 gas mixtures ratios for the process gas to prepare various LNMO thin films with highly controlled morphology and particle size; as determined from X-ray diffraction, Raman spectroscopy and electron microscopy. It resulted in enhanced cycling and rate performance. This processing method delivered N-containing LNMO thin film electrodes with up to 15 % increased discharge capacity at 1 C (120 mAh g(-1)) with respect to standard LNMO (grown under only Ar gas flow) thin film electrodes, along with outstanding rate performance up to 10 C (99 mAh g(-1)) in the operating voltage window 3.5-4.85 V vs. Li+/Li. Besides, electrochemical impedance spectroscopy results showed that the intricate phase transitions present in standard LNMO electrodes were almost suppressed in N-containing LNMO thin films grown under different Ar-N-2 gas flow mixtures
- …