7 research outputs found

    Molecular determinants of TRPV4 channel regulation

    Get PDF
    TRPV4 is a non-selective cation channel with a wide expression and multiple cellular and systemic functions. Described initially as an osmosensor, it can also be activated by temperature and cell swelling. Due to this variety of activating stimuli it may have a promiscuous gating behavior which is mostly unknown. This Thesis research aims to get in-depth in the understanding of the molecular determinants of TRPV4 regulation. I provide evidences that the inositol trisphosphate receptor and its modulatory function on TRPV4 relies on its binding to the C-terminal tail of TRPV4. I discuss the role of the channels’ N-terminal tail in osmotransduction and show how a mutation that results in a channel with an impaired response to osmotic environments is associated to a pathophysiological condition such as hyponatremia. I also highlight the importance of this N-terminal tail and the binding to the regulatory protein PACSIN3 for the global conformation of the channel.El TRPV4 Ă©s un canal catiĂČnic no selectiu d’expressiĂł generalitzada i funcions diverses. Tot i que inicialment es va descriure com un osmosensor sistĂšmic, avui sabem que tambĂ© es pot activar per temperatura o per augments del volum cel‱lular. Degut a la diversitat d’estĂ­muls, el canal presenta diferents vies d’activaciĂł la major part de les quals sĂłn desconegudes. Aquesta Tesi pretĂ©n estudiar en detall els mecanismes moleculars que regulen l’activitat del canal. Aportem evidĂšncies del lloc d’uniĂł a la cua C-terminal del receptor d’inositol trifosfat aixĂ­ com la seva modulaciĂł sobre l’activitat del TRPV4. TambĂ© discutim el rol de la cua N-terminal en la osmotransducciĂł i presentem una mutaciĂł, generadora d’un canal amb una resposta anĂČmala a estĂ­muls hipotĂČnics, que estĂ  associada a una condiciĂł fisiopatolĂČgica com la hiponatremia. TambĂ© destaquem la importĂ ncia de la cua N-terminal i de la uniĂł de la proteĂŻna reguladora PACSIN3 en la conformaciĂł global del canal

    Aging impairs reverse remodeling and recovery of ventricular function after isoproterenol-induced cardiomyopathy

    No full text
    Information about heart failure with reduced ejection fraction (HFrEF) in women and the potential effects of aging in the female heart is scarce. We investigated the vulnerability to develop HFrEF in female elderly mice compared to young animals, as well as potential differences in reverse remodeling. First, HF was induced by isoproterenol infusion (30 mg/kg/day, 28 days) in young (10-week-old) and elderly (22-month-old) female mice. In a second set of animals, mice underwent isoproterenol infusion followed by no treatment during 28 additional days. Cardiac remodeling was assessed by echocardiography, histology and gene expression of collagen-I and collagen-III. Following isoproterenol infusion, elderly mice developed similar HFrEF features compared to young animals, except for greater cell hypertrophy and tissue fibrosis. After beta-adrenergic withdrawal, young female mice experienced complete reversal of the HFrEF phenotype. Conversely, reversed remodeling was impaired in elderly animals, with no significant recovery of LV ejection fraction, cardiomyocyte hypertrophy and collagen deposition. In conclusion, chronic isoproterenol infusion is a valid HF model for elderly and young female mice and induces a similar HF phenotype in both. Elderly animals, unlike young, show impaired reverse remodeling, with persistent tissue fibrosis and cardiac dysfunction even after beta-adrenergic withdrawal

    IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid

    No full text
    Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A(2) (PLA(2)) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA(2)-EET as the primary pathway to activate TRPV4. Under conditions of low PLA(2) activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)-inositol trisphosphate (IP(3)) signaling to support TRPV4 gating. IP(3), without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP(3) receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP(3) receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca(2+) channels required to initiate and maintain the oscillatory Ca(2+) signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA(2) activation.This work was supported by grants from the Spanish Ministries of Education and Science (SAF2006-04973 and SAF2006-13893-C02-02), and Health (Fondo de InvestigaciĂłn Sanitaria, Red HERACLES RD06/0009), the Generalitat de Catalunya (SGR05-266), and FundaciĂł la MaratĂł de TV3 (061331). J.M. FernĂĄndez-FernĂĄndez is a RamĂłn y Cajal Fellow

    Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs

    Get PDF
    MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated the performance of a hybridization platform using lower amounts of starting RNA. miRNAs isolated from human plasma and from a reference sample were quantified using four platforms and profiled with hybridization arrays and RNA sequencing (RNA-seq). Our results indicate that the InfiniteÂź 200 PRO Nanoquant and Nanodrop 2000 spectrophotometers magnified the miRNA concentration by detecting contaminants, proteins, and other forms of RNA. The Agilent 2100 Bioanalyzer PicoChip and SmallChip gave valuable information on RNA profile but were not a reliable quantification method for plasma samples. The QubitÂź 2.0 Fluorometer provided the most accurate quantification of miRNA content, although RNA-seq confirmed that only ~58% of small RNAs in plasma are true miRNAs. On the other hand, reducing the starting RNA to 70% of the recommended amount for miRNA profiling with arrays yielded results comparable to those obtained with the full amount, whereas a 50% reduction did not. These findings provide important clues for miRNA determination in human plasma samples

    Atrial fibrillation in heart failure is associated with high levels of circulating microRNA-199a-5p and 22-5p and a defective regulation of intracellular calcium and cell-to-cell communication

    Get PDF
    MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.This work was funded by the following grants, awarded to B.B.: Sociedad Española de CardiologĂ­a, SecciĂłn de Arritmias y ElectrofisiologĂ­a 2012; Sociedad Española de CardiologĂ­a, SecciĂłn de Insuficiencia CardĂ­aca 2013; Fondo InvestigaciĂłn Sanitaria (FIS)—Instituto Carlos III 2013 (PI13/01830); and Societat Catalana de Cardiologia 2016. Awarded to K.W.A-A. and S.R.: British Heart Foundation (BHF) Intermediate Research Fellowship. Awarded to J.M.F.F.: grant from the Spanish Ministry of Science and Innovation (RTI2018-094809-B-I00). “MarĂ­a de Maeztu” Programme for Units of Excellence in R&D to the Departament de CiĂšncies Experimentals i de la Salut (MDM-2014-0370) and FEDER (Fondo Europeo de Desarrollo Regional) also contributed to this work

    Cannabinoid signaling modulation through JZL184 restores key phenotypes of a mouse model for Williams-Beuren syndrome

    No full text
    Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.This study was supported by Ministerio de Economía, Innovación y Competitividad (MINECO), Spain #RTI2018-099282-B-I00B to A.O., #SAF2017-84060-R to R.M.; Generalitat de Catalunya, Spain (2017SGR-669 to R.M.); Ministerio de Ciencia e Innovación (SAF2016-78508-R; AEI/MINEICO/FEDER, UE) to VC. Basque Government IT1454-22 to the 'Neurochemistry and Neurodegeneration' consolidated research group to R R-P. Instituto de Salud Carlos III (PI20/00153, co-funded by the European Union [ERDF 'A way to make Europe']) to R R-P. ICREA (Institució Catalana de Recerca i Estudis Avançats, Spain) Academia to A.O. and R.M. Grant 'Unidad de Excelencia María de Maeztu', funded by the MINECO (#MDM-2014-0370); IPEP MdM 2017 to A.O. and E.E. FEDER, European Commission funding is also acknowledged

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore