16 research outputs found

    A Novel Role For Nanog As An Early Cancer Risk Marker In Patients With Laryngeal Precancerous Lesions

    Full text link
    NANOG is a master regulator of embryonic stem cell pluripotency, found to be frequently aberrantly expressed in a variety of cancers, including laryngeal carcinomas. This study investigates for the first time the role of NANOG expression in early stages of laryngeal tumourigenesis and its potential utility as cancer risk marker. NANOG protein expression was evaluated by immunohistochemistry using two large independent cohorts of patients with laryngeal precancerous lesions, and correlated with clinicopathological parameters and laryngeal cancer risk. NANOG expression was detected by immunohistochemistry in 49 (60%) of 82 laryngeal dysplasias, whereas expression was negligible in patient-matched normal epithelia. Strong NANOG expression was found in 22 (27%) lesions and was established as cut-off point, showing the most robust association with laryngeal cancer risk (P = 0.003) superior to the histological classification (P = 0.320) the current gold standard in the clinical practice. Similar trends were obtained using a multicenter validation cohort of 86 patients with laryngeal dysplasia. Our findings uncover a novel role for NANOG expression in laryngeal tumourigenesis, and its unprecedented application as biomarker for cancer risk assessment

    SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications

    Get PDF
    Stemness in sarcomas is coordinated by the expression of pluripotency factors, like SOX2, in cancer stem cells (CSC). The role of SOX2 in tumor initiation and progression has been well characterized in osteosarcoma. However, the pro-tumorigenic features of SOX2 have been scarcely investigated in other sarcoma subtypes. Here, we show that SOX2 depletion dramatically reduced the ability of undifferentiated pleomorphic sarcoma (UPS) cells to form tumorspheres and to initiate tumor growth. Conversely, SOX2 overexpression resulted in increased in vivo tumorigenicity. Moreover, using a reporter system (SORE6) which allows to monitor viable cells expressing SOX2 and/or OCT4, we found that SORE6+ cells were significantly more tumorigenic than the SORE6- subpopulation. In agreement with this findings, SOX2 expression in sarcoma patients was associated to tumor grade, differentiation, invasive potential and lower patient survival. Finally, we studied the effect of a panel of anti-tumor drugs on the SORE6+ cells of the UPS model and patient-derived chondrosarcoma lines. We found that the mithramycin analogue EC-8042 was the most efficient in reducing SORE6+ cells in vitro and in vivo. Overall, this study demonstrates that SOX2 is a pro-tumorigenic factor with prognostic potential in sarcoma. Moreover, SORE6 transcriptional activity is a bona fide CSC marker in sarcoma and constitutes an excellent biomarker for evaluating the efficacy of anti-tumor treatments on CSC subpopulations.This work was supported by the Agencia Estatal de Investigación (AEI) [MINECO/Fondo Europeo de Desarrollo Regional (FEDER) (SAF-2016-75286-R to R.R.), ISC III/FEDER (Miguel Servet Program CPII16/00049 to R.R., Sara Borrell Program CD16/00103 to S.T.M. and PI16/00280 and PI19/00560 to J.M.G-P) and Consorcio CIBERONC CB16/12/00390)] and the Plan de Ciencia Tecnología e Innovación del Principado de Asturias/FEDER (IDI/2018/155) to J.P.R and Predoctoral Fellowship Severo Ochoa (BP-17-108) to O.E.S

    Multifaceted role of TREX2 in the skin defense against UV-induced skin carcinogenesis

    Get PDF
    TREX2 is a 3'-DNA exonuclease specifically expressed in keratinocytes. Here, we investigated the relevance and mechanisms of TREX2 in ultraviolet (UV)-induced skin carcinogenesis. TREX2 expression was up-regulated by chronic UV exposure whereas it was de-regulated or lost in human squamous cell carcinomas (SCCs). Moreover, we identified SNPs in the TREX2 gene that were more frequent in patients with head and neck SCCs than in healthy individuals. In mice, TREX2 deficiency led to enhanced susceptibility to UVB-induced skin carcinogenesis which was preceded by aberrant DNA damage removal and degradation as well as reduced inflammation. Specifically, TREX2 loss diminished the up-regulation of IL12 and IFNγ, key cytokines related to DNA repair and antitumor immunity. In UV-treated keratinocytes, TREX2 promoted DNA repair and passage to late apoptotic stages. Notably, TREX2 was recruited to low-density nuclear chromatin and micronuclei, where it interacted with phosphorylated H2AX histone, which is a critical player in both DNA repair and cell death. Altogether, our data provide new insights in the molecular mechanisms of TREX2 activity and establish cell autonomous and non-cell autonomous functions of TREX2 in the UVB-induced skin response

    VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma

    Get PDF
    Regenerative proliferation capacity and poor differentiation are histological features usually linked to poor prognosis in head and neck squamous cell carcinoma (hnSCC). However, the pathways that regulate them remain ill-characterized. Here, we show that those traits can be triggered by the RHO GTPase activator VAV2 in keratinocytes present in the skin and oral mucosa. VAV2 is also required to maintain those traits in hnSCC patient-derived cells. This function, which is both catalysis- and RHO GTPase-dependent, is mediated by c-Myc- and YAP/TAZ-dependent transcriptomal programs associated with regenerative proliferation and cell undifferentiation, respectively. High levels of VAV2 transcripts and VAV2-regulated gene signatures are both associated with poor hnSCC patient prognosis. These results unveil a druggable pathway linked to the malignancy of specific SCC subtypes. The Rho signalling pathway is frequently activated in squamous carcinomas. Here, the authors find that the Rho GEF VAV2 is over expressed in both cutaneous and head and neck squamous cell carcinomas and that at the molecular level VAV2 promotes a pro-tumorigenic stem cell-like signalling programme

    A Novel Role For Nanog As An Early Cancer Risk Marker In Patients With Laryngeal Precancerous Lesions

    No full text
    NANOG is a master regulator of embryonic stem cell pluripotency, found to be frequently aberrantly expressed in a variety of cancers, including laryngeal carcinomas. This study investigates for the first time the role of NANOG expression in early stages of laryngeal tumourigenesis and its potential utility as cancer risk marker. NANOG protein expression was evaluated by immunohistochemistry using two large independent cohorts of patients with laryngeal precancerous lesions, and correlated with clinicopathological parameters and laryngeal cancer risk. NANOG expression was detected by immunohistochemistry in 49 (60%) of 82 laryngeal dysplasias, whereas expression was negligible in patient-matched normal epithelia. Strong NANOG expression was found in 22 (27%) lesions and was established as cut-off point, showing the most robust association with laryngeal cancer risk (P = 0.003) superior to the histological classification (P = 0.320) the current gold standard in the clinical practice. Similar trends were obtained using a multicenter validation cohort of 86 patients with laryngeal dysplasia. Our findings uncover a novel role for NANOG expression in laryngeal tumourigenesis, and its unprecedented application as biomarker for cancer risk assessment

    TSPAN1 : a Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    No full text
    Altres ajuts: This work was supported by grants from the Instituto de Salud Carlos III, Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively.Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial-mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy

    Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways

    No full text
    Treatment of head and neck squamous cell carcinomas (HNSCC), the sixth most frequent cancer worldwide, remains challenging. miRNA dysregulation is closely linked to tumorigenesis and tumor progression, thus emerging as suitable targets for cancer treatment. Transcriptomic analysis of TCGA HNSCC dataset revealed that miR-301a expression levels significantly increased in primary tumors, as compared to patient-matched normal tissue. This prompted us to investigate its pathobiological role and potential as new therapeutic target using different preclinical HNSCC models. miR-301a overexpression in HNSCC-derived cell lines led to enhanced proliferation and invasion, whereas miR-301 inhibition reduced these effects. In vivo validation was performed using an orthotopic mouse model. Results concordantly showed that the mitotic counts, the percentage of infiltration depth and Ki67 proliferative index were significantly augmented in the subgroup of mice harboring miR-301a-overexpressing tumors. Further mechanistic characterization revealed PI3K/PTEN/AKT and MEK/ERK pathways as central signaling nodes responsible for mediating the oncogenic activity of miR-301a observed in HNSCC cells. Notably, pharmacological disruption of PI3K and ERK signals with BYL-719 and PD98059, respectively, was effective to completely revert/abolish miR-301a-promoted tumor cell growth and invasion. Altogether, these findings demonstrate that miR-301a dysregulation plays an oncogenic role in HNSCC, thus emerging as a candidate therapeutic target for this disease. Importantly, available PI3K and ERK inhibitors emerge as promising anti-tumor agents to effectively target miR-301a-mediated signal circuit hampering growth-promoting and pro-invasive functions
    corecore