1,089 research outputs found

    In vitro magnetic hyperthermia using polyphenol-coated Fe3O4¿Fe2O3 nanoparticles from Cinnamomun verum and Vanilla planifolia: The concert of green synthesis and therapeutic possibilities

    Get PDF
    We report on a new, environment-friendly synthesis route to produce Fe3O4 magnetic nanoparticles (MNPs) from extracts of the plants Vanilla planifolia and Cinnamomun verum. These aqueous plant extracts have the double function of reducing agents due to their phenolic groups, and also capping materials through the -OH bonding over the MNPs surface. The resulting MNPs have average sizes ˜10-14 nm with a core-shell Fe3O4-¿Fe2O3 structure due to surface oxidation driven by the phenolic groups through OH-covalent bonding. Saturation magnetization values of MS= 70.84 emu g-1 (C. verum) and MS = 59.45 emu g-1 (V. planifolia) are among the largest reported so far from biosynthetic samples. Electron microscopy and infrared spectroscopy data showed a thin organic layer coating the Fe3O4 @¿Fe2O3 MNPs, composed by the phenolic groups from the starting extracts of both C. verum and V. planifolia. A proof of concept for these MNPs as heating agents in magnetic hyperthermia experiments (570 kHz, 23.9 kA m-1) was performed in-vitro, showing their efficacy to induce cell death on BV2 microglial cells after 30 min at a target temperature T = 46 °C

    A Parallelizable Heuristic for Solving the Generic Materials and Operations Planning in a Supply Chain Network: A Case Study from the Automotive Industry

    Full text link
    [EN] A trend in up-to date developments in multi-site operations planning models is to consider in details the different ways to produce, buy or transport products and the distributed decision-making process for operations planning. One of the most generic approaches to support global optimization in those supply chain networks by considering all the different operations alternatives and product structures is the Generic Materials & Operations Planning Problem. This problem can be modelled by a Mixed Integer Linear Programming model capable of considering production, transportation, procurement tasks and their alternatives and other relevant issues such as packaging. The aim of this paper is to introduce the implementation of a parallelizable heuristic method for materials and operations planning and its application to a case of a Supply Chain Network of the automotive industry. The approach uses variants of the GMOP model to overcome traditional MRP systems' limitations.Maheut ., JP.; García Sabater, JP. (2013). A Parallelizable Heuristic for Solving the Generic Materials and Operations Planning in a Supply Chain Network: A Case Study from the Automotive Industry. IFIP Advances in Information and Communication Technology. 397:151-157. doi:10.1007/978-3-642-40352-1_20S151157397Maheut, J., Garcia-Sabater, J.P.: La Matriz de Operaciones y Materiales y la Matriz de Operaciones y Recursos, un nuevo enfoque para resolver el problema GMOP basado en el concepto del Stroke. Dirección y Organización 45, 46–57 (2011)Garcia-Sabater, J.P., Maheut, J., Marin-Garcia, J.A.: A new formulation technique to model Materials and Operations Planning: the Generic Materials and Operations Planning (GMOP) Problem. European J. Industrial Engineering 7, 119–147 (2013)Mula, J., Maheut, J., Garcia-Sabater, J.P.: Supply Chain Network Design. Journal of Marketing and Operations Management Research 1, 378–383 (2012)Dudek, G., Stadtler, H.: Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research 163, 668–687 (2005)Torabi, S.A., Hassini, E.: Multi-site production planning integrating procurement and distribution plans in multi-echelon supply chains: an interactive fuzzy goal programming approach. International Journal of Production Research 47, 5475–5499 (2009)Kanyalkar, A.P., Adil, G.K.: Aggregate and detailed production planning integrating procurement and distribution plans in a multi-site environment. International Journal of Production Research 45, 5329–5353 (2007)de Kok, T.G., Fransoo, J.C.: Planning Supply Chain Operations: Definition and Comparison of Planning Concepts. In: Graves, S.C. (ed.) Handbooks in Operations Research and Management Science Supply Chain Management: Design, Coordination and Operation, vol. 11, pp. 597–675. Elsevier (2003)Buschkühl, L., Sahling, F., Helber, S., Tempelmeier, H.: Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum (2009)Maheut, J., Garcia-Sabater, J.P., Mula, J.: A supply Chain Operations Lot-Sizing and Scheduling Model with Alternative Operations. In: Sethi, S.P., Bogataj, M., Ros-McDonnell, L. (eds.) Proceedings of the Industrial Engineering: Innovative Networks, 5th International Conference on Industrial Engineering and Industrial Management "CIO 2011", Cartagena, Spain, pp. 309–316. Springer, London (2012)Garcia-Sabater, J.P., Maheut, J., Garcia-Sabater, J.J.: A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: the case of an engine assembler. Flexible Services and Manufacturing Journal 24, 171–209 (2012)Pinto, J.M., Chen, P., Papageorgiou, L.G.: A discrete/continuous time MILP model for medium term planning of single stage multiproduct plants, pp. 1–6. Elsevier, B.V. (2007)Scheer, A.W.: Business Process Engineering - Reference Models for Industrial Enterprises. Springer (1994)Lin, J.T., Chen, T.L., Lin, Y.T.: Critical material planning for TFT-LCD production industry. International Journal of Production Economics 122, 639–655 (2009)Escudero, L.F.: CMIT, capacitated multi-level implosion tool. European Journal of Operational Research 76, 511–528 (1994)Maheut, J., Garcia-Sabater, J.P., Valero-Herrero, M.: MILP model for solving the supply chain operations scheduling problem with alternative operations considering delay penalization: a case study of a mass customization company. In: Proceedings of the 41st International Conference on Computers & Industrial Engineering, pp. 289–294 (2011

    An Agent-Based Model of Collective Emotions in Online Communities

    Full text link
    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended introduction, clarification

    Dynamics of tachyonic preheating after hybrid inflation

    Full text link
    We study the instability of a scalar field at the end of hybrid inflation, using both analytical techniques and numerical simulations. We improve previous studies by taking the inflaton field fully into account, and show that the range of unstable modes depends sensitively on the velocity of the inflaton field, and thereby on the Hubble rate, at the end of inflation. If topological defects are formed, their number density is determined by the shortest unstable wavelength. Finally, we show that the oscillations of the inflaton field amplify the inhomogeneities in the energy density, leading to local symmetry restoration and faster thermalization. We believe this explains why tachyonic preheating is so effective in transferring energy away from the inflaton zero mode.Comment: 12 pages, 10 figures, REVTeX. Minor changes, some references added. To appear in PR

    Gravitons and Lightcone Fluctuations

    Get PDF
    Gravitons in a squeezed vacuum state, the natural result of quantum creation in the early universe or by black holes, will introduce metric fluctuations. These metric fluctuations will introduce fluctuations of the lightcone. It is shown that when the various two-point functions of a quantized field are averaged over the metric fluctuations, the lightcone singularity disappears for distinct points. The metric averaged functions remain singular in the limit of coincident points. The metric averaged retarded Green's function for a massless field becomes a Gaussian which is nonzero both inside and outside of the classical lightcone. This implies some photons propagate faster than the classical light speed, whereas others propagate slower. The possible effects of metric fluctuations upon one-loop quantum processes are discussed and illustrated by the calculation of the one-loop electron self-energy.Comment: 18pp, LATEX, TUTP-94-1

    Relaxation phenomena at criticality

    Get PDF
    The collective behaviour of statistical systems close to critical points is characterized by an extremely slow dynamics which, in the thermodynamic limit, eventually prevents them from relaxing to an equilibrium state after a change in the thermodynamic control parameters. The non-equilibrium evolution following this change displays some of the features typically observed in glassy materials, such as ageing, and it can be monitored via dynamic susceptibilities and correlation functions of the order parameter, the scaling behaviour of which is characterized by universal exponents, scaling functions, and amplitude ratios. This universality allows one to calculate these quantities in suitable simplified models and field-theoretical methods are a natural and viable approach for this analysis. In addition, if a statistical system is spatially confined, universal Casimir-like forces acting on the confining surfaces emerge and they build up in time when the temperature of the system is tuned to its critical value. We review here some of the theoretical results that have been obtained in recent years for universal quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics, with particular focus on the Ising model with Glauber dynamics in the bulk. The non-equilibrium dynamics of the Casimir force acting in a film is discussed within the Gaussian model.Comment: Talk delivered at Statphys23, Genova, Italy, July 9-13, 2007. 8 pages, 7 figure

    Effortless attention as a biomarker for experienced mindfulness practitioners

    Get PDF
    Objective: The present study aimed at comparing frontal beta power between long-term (LTM) and first-time meditators (FTM), before, during and after a meditation session. We hypothesized that LTM would present lower beta power than FTM due to lower effort of attention and awareness. Methods: Twenty one participants were recruited, eleven of whom were long-term meditators. The subjects were asked to rest for 4 minutes before and after open monitoring (OM) meditation (40 minutes). Results: The two-way ANOVA revealed an interaction between the group and moment factors for the Fp1 (p<0.01), F7 (p = 0.01), F3 (p<0.01), Fz (p<0.01), F4 (p<0.01), F8 (p<0.01) electrodes. Conclusion: We found low power frontal beta activity for LTM during the task and this may be associated with the fact that OM is related to bottom-up pathways that are not present in FTM. Significance: We hypothesized that the frontal beta power pattern may be a biomarker for LTM. It may also be related to improving an attentive state and to the efficiency of cognitive functions, as well as to the long-term experience with meditation (i.e., life-time experience and frequency of practice)

    Realistic D-Brane Models on Warped Throats: Fluxes, Hierarchies and Moduli Stabilization

    Full text link
    We describe the construction of string theory models with semirealistic spectrum in a sector of (anti) D3-branes located at an orbifold singularity at the bottom of a highly warped throat geometry, which is a generalisation of the Klebanov-Strassler deformed conifold. These models realise the Randall-Sundrum proposal to naturally generate the Planck/electroweak hierarchy in a concrete string theory embedding, and yielding interesting chiral open string spectra. We describe examples with Standard Model gauge group (or left-right symmetric extensions) and three families of SM fermions, with correct quantum numbers including hypercharge. The dilaton and complex structure moduli of the geometry are stabilised by the 3-form fluxes required to build the throat. We describe diverse issues concerning the stabilisation of geometric Kahler moduli, like blow-up modes of the orbifold singularities, via D term potentials and gauge theory non-perturbative effects, like gaugino condensation. This local geometry, once embedded in a full compactification, could give rise to models with all moduli stabilised, and with the potential to lead to de Sitter vacua. Issues of gauge unification, proton stability, supersymmetry breaking and Yukawa couplings are also discussed.Comment: 46 pages, 13 figures (figures 3 and 13 corrected

    Photocatalytic Hydrogen Production Of Co(oh)2 Nanoparticle-coated α-fe2o3 Nanorings

    Get PDF
    The production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe 2O3 can meet these requirements by means of using hydrothermally prepared nanorings. These iron oxide nanoring photocatalysts proved capable of producing hydrogen efficiently without application of an external bias. In addition, Co(OH)2 nanoparticles were shown to be efficient co-catalysts on the nanoring surface by improving the efficiency of hydrogen generation. Both nanoparticle-coated and uncoated nanorings displayed superior photocatalytic activity for hydrogen evolution when compared with TiO2 nanoparticles, showing themselves to be promising materials for water-splitting using only solar light. © The Royal Society of Chemistry 2013.51993109316Navarro Yerga, R.M., Álvarez Galván, M.C., Del Valle, F., Villoria De La Mano, J.A., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Fujishima, A., Honda, K., (1972) Nature, 238, pp. 37-38Kudo, A., Miseki, Y., (2009) Chem. Soc. Rev., 38, pp. 253-278Sivula, K., Le Formal, F., Gratzel, M., (2011) ChemSusChem, 4, pp. 432-449Yerga, R.M.N., Galvan, M.C.A., Del Valle, F., De La Mano, J.A.V., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Chen, X.B., Shen, S.H., Guo, L.J., Mao, S.S., (2010) Chem. Rev., 110, pp. 6503-6570Hernandez-Alonso, M.D., Fresno, F., Suarez, S., Coronado, J.M., (2009) Energy Environ. Sci., 2, pp. 1231-1257Kudo, A., (2003) Catal. Surv. Asia, 7, pp. 31-38Wender, H., Feil, A.F., Diaz, L.B., Ribeiro, C.S., Machado, G.J., Migowski, P., Weibel, D.E., Teixeira, S.R., (2011) ACS Appl. Mater. Interfaces, 3, pp. 1359-1365Khan, S.U.M., Al-Shahry, M., Ingler, W.B., (2002) Science, 297, pp. 2243-2245Sreethawong, T., Ngamsinlapasathian, S., Suzuki, Y., Yoshikawa, S., (2005) J. Mol. Catal. A: Chem., 235, pp. 1-11Li, Z.H., Chen, G., Tian, X.J., Li, Y.X., (2008) Mater. Res. Bull., 43, pp. 1781-1788Meng, F.K., Hong, Z.L., Arndt, J., Li, M., Zhi, M.J., Yang, F., Wu, N.Q., (2012) Nano Res., 5, pp. 213-221Pei, D.H., Luan, J.F., (2012) Int. J. Photoenergy, , 10.1155/2012/262831Sun, J.W., Liu, C., Yang, P.D., (2011) J. Am. Chem. Soc., 133, pp. 19306-19309Nann, T., Ibrahim, S.K., Woi, P.M., Xu, S., Ziegler, J., Pickett, C.J., (2010) Angew. Chem., Int. Ed., 49, pp. 1574-1577Higashi, M., Domen, K., Abe, R., (2011) Energy Environ. Sci., 4, pp. 4138-4147Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., Domen, K., (2011) J. Am. Chem. Soc., 133, pp. 12334-12337Ikeue, K., Shiiba, S., Machida, M., (2011) ChemSusChem, 4, pp. 269-273Yu, J.G., Yang, B., Cheng, B., (2012) Nanoscale, 4, pp. 2670-2677Yashima, M., Ogisu, K., Domen, K., (2008) Acta Crystallogr., Sect. B: Struct. Sci., 64, pp. 291-298Yan, Q., Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H., Hoster, H.E., Zhang, H., (2013) Energy Environ. Sci., 6 (3), pp. 987-993Tahir, A.A., Wijayantha, K.G.U., Saremi-Yarahmadi, S., Mazhar, M., McKee, V., (2009) Chem. Mater., 21, pp. 3763-3772Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M., (2009) J. Phys. D: Appl. Phys., 42Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S., (2008) Int. J. Hydrogen Energy, 33, pp. 312-318Saremi-Yarahmadi, S., Vaidhyanathan, B., Wijayantha, K.G.U., (2010) Int. J. Hydrogen Energy, 35, pp. 10155-10165Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., Wang, D., (2012) J. Am. Chem. Soc., 134, pp. 5508-5511Kumar, P., Sharma, P., Solanki, A., Tripathi, A., Deva, D., Shrivastav, R., Dass, S., Satsangi, V.R., (2012) Int. J. Hydrogen Energy, 37, pp. 3626-3632Kronawitter, C.X., Vayssieres, L., Shen, S.H., Guo, L.J., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., Mao, S.S., (2011) Energy Environ. Sci., 4, pp. 3889-3899Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., Guo, J.H., (2005) Adv. Mater., 17, pp. 2320-2323Jia, C.-J., Sun, L.-D., Luo, F., Han, X.-D., Heyderman, L.J., Yan, Z.-G., Yan, C.-H., Raabe, J.R., (2008) J. Am. Chem. Soc., 130, pp. 16968-16977De La Peña, F., Barrett, N., Zagonel, L.F., Walls, M., Renault, O., (2010) Surf. Sci., 604, pp. 1628-1636De La Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M., (2011) Ultramicroscopy, 111, pp. 169-176Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H., Colliex, C., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 104103Gonçalves, R.V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D.E., Sonaglio V. F, C., Zapata, M.J.M., Teixeira, S.R., (2012) J. Phys. Chem. C, 116, pp. 14022-14030Zhao, Y., Feltes, T.E., Regalbuto, J.R., Meyer, R.J., Klie, R.F., (2010) J. Appl. Phys., 108, pp. 063704-063707Zhang, Z., (2007) Ultramicroscopy, 107, pp. 598-603Liu, B., Nakata, K., Liu, S., Sakai, M., Ochiai, T., Murakami, T., Takagi, K., Fujishima, A., (2012) J. Phys. Chem. C, 116, pp. 7471-7479An, W.-J., Wang, W.-N., Ramalingam, B., Mukherjee, S., Daubayev, B., Gangopadhyay, S., Biswas, P., (2012) Langmuir, 28, pp. 7528-7534Jang, J.S., Choi, S.H., Kim, D.H., Jang, J.W., Lee, K.S., Lee, J.S., (2009) J. Phys. Chem. C, 113, pp. 8990-8996Li, Z., Wang, Y., Liu, J., Chen, G., Li, Y., Zhou, C., (2009) Int. J. Hydrogen Energy, 34, pp. 147-152Shimizu, K.-I., Tsuji, Y., Hatamachi, T., Toda, K., Kodama, T., Sato, M., Kitayama, Y., (2004) Phys. Chem. Chem. Phys., 6, pp. 1064-106
    corecore