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Abstract. The collective behaviour of statistical systems close to critical points is characterized by an
extremely slow dynamics which, in the thermodynamic limit, eventually prevents them from relaxing to an
equilibrium state after a change in the thermodynamic control parameters. The non-equilibrium evolution
following this change displays some of the features typically observed in glassy materials, such as ageing,
and it can be monitored via dynamic susceptibilities and correlation functions of the order parameter, the
scaling behaviour of which is characterized by universal exponents, scaling functions, and amplitude ratios.
This universality allows one to calculate these quantities in suitable simplified models and field-theoretical
methods are a natural and viable approach for this analysis. In addition, if a statistical system is spatially
confined, universal Casimir-like forces acting on the confining surfaces emerge and they build up in time
when the temperature of the system is tuned to its critical value. We review here some of the theoretical
results that have been obtained in recent years for universal quantities, such as the fluctuation-dissipation
ratio, associated with the non-equilibrium critical dynamics, with particular focus on the Ising model with
Glauber dynamics in the bulk. The non-equilibrium dynamics of the Casimir force acting in a film is
discussed within the Gaussian model.

PACS. 64.60.Ht Dynamic critical phenomena – 64.60.an Finite-size systems

1 Introduction

Critical points occur in the phase diagrams of a variety
of microscopically different systems, ranging from mag-
netic materials (ferromagnetic/paramagnetic transition),
to pure fluids (liquid/vapour critical point), binary mix-
tures (mixing/demixing transition) and strongly interact-
ing matter (QCD). In spite of these differences at the mi-
croscopic scale, a unified picture of the collective critical
behaviour emerges in terms of the so-called order param-
eter ϕ of the transition, the nature of which depends on
the specific system while its fluctuations determine the
physical behaviour close to critical points. In particular,
in the case of ferromagnetic materials, ϕ(x, t) can be iden-
tified with the coarse-grained magnetization density at
point x and time t, whereas for a fluid A/B binary mix-
ture with critical concentrations ccrit

A /ccrit
B , ϕ is given al-

ternatively, by cA − ccrit
A or cB − ccrit

B where cA,B are the
space-time dependent concentrations of the species A and
B, respectively. The thermal fluctuations of the order pa-
rameter field ϕ are correlated in space and time across
a typical correlation length ξ and a (linear) relaxation
time tR. Upon approaching the critical point, ξ and tR
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become much larger than the corresponding microscopic
length and time scales �micr and τmicr, respectively, result-
ing in a spatially collective and temporally slow behaviour
which is characterized by a certain degree of universality.
In fact, the physics at scales much larger than τmicr and
�micr becomes largely independent of the microscopic de-
tails of the system, depending only on its gross features
such as the range of the microscopic interactions, internal
symmetries, spatial dimensionality d, conservation laws
etc. which characterize the so-called universality class of
the transition. Universality is primarily an experimental
fact based on the evidence that, e.g., ξ ∼ ξ0|r|−ν and
tR ∼ τ0|r|−νz for r ≡ (T − Tc)/Tc → 0, where Tc is the
critical temperature, ξ0 and τ0 specifically depend on the
microscopic details of the system and therefore are non-
universal, whereas ν and z are universal exponents in the
sense specified above [1,2]. Universality can be exploited in
order to study the critical behaviour of a statistical sys-
tem via suitable minimal models having the same gross
features as the actual system and therefore belonging to
the same universality class. In most of the cases this is
done in terms of effective theories for the order parame-
ter field ϕ(x, t) and the resulting critical scaling properties
can be analyzed by means of powerful field-theoretical and
renormalization-group methods [1].
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Fig. 1. Quenches in the phase diagram of an Ising ferromagnet:
T is the temperature of the bath, H the external magnetic field
and (T, H) = (Tc, 0) is the critical point. The initial conditions
A and B are characterized by a vanishing and non-vanishing
magnetization, respectively.

The slow and collective behaviour which emerges close
to critical points affects relaxation phenomena and the
way in which they actually occur. In Section 2 we discuss
the case of bulk systems, with particular emphasis on the
emerging non-equilibrium properties, whereas in Section 3
we focus on confined critical systems in film geometry.

2 Non-equilibrium relaxation in the bulk

Altough the picture presented below is quite general, we
shall refer specifically to the case of uniaxial ferromagnets
belonging to the Ising universality class, with a critical
temperature Tc and a space-time dependent order param-
eter ϕ(x, t) (magnetization density).

One of the simplest instances of relaxation phenomena
can be observed after a sudden thermal perturbation. In
fact, assume that a system, initially in equilibrium with a
thermal bath at temperature T0, is brought at time t = 0
in contact with a thermal bath at temperature T �= T0.
As a consequence of this perturbation the system starts
evolving out of equilibrium in a way which is expected to
depend on the specific initial condition (e.g., on T0). Af-
ter this transient regime, of typical duration tEQ(T ), the
system equilibrates with the thermal bath at temperature
T , loses memory of the thermal quench and its dynamics
becomes stationary and invariant (in the absence of exter-
nal fields) under time reversal; fluctuations are therefore
described by equilibrium dynamics. The duration tEQ(T )
of the transient regime, i.e., of the relaxation, depends on
the temperature T and is such that tEQ(T > Tc) is finite
whereas tEQ(T ≤ Tc) is actually infinite (in the thermo-
dynamic limit) and the non-equilibrium relaxation goes
on forever. In particular, we focus here on the case of a
quench to the critical point T = Tc, referring the reader
to reference [3] for a discussion of the phase ordering dy-
namics for T < Tc. The fact that tEQ(T = Tc) is not
finite is actually due to the emergent slow and collective
critical behaviour. In this context it is important to un-
derstand the general features of this non-equilibrium re-
laxation, exploring, e.g., how it depends on the initial con-
dition of the system. In particular – referring to Ising-like
magnets – we will consider the cases depicted in Figure 1
of quenches from an initial state with vanishing (A) and
non-vanishing (B) magnetization. In addition to the de-
pendence on the initial condition, it is also of interest to
understand how the universality which characterizes criti-
cal phenomena manifests itself in the long-time relaxation
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Fig. 2. X∞ as a function of the final temperature T of the
quench starting from a disordered initial state [9]. The value of
X∞ for T = Tc depends on the universality class of the system.

and if a scaling behaviour actually emerges. Some of these
issues were already addressed more than 30 years ago,
with particular focus on the dynamics of the order pa-
rameter [4,5]. Only quite recently, however, it has been
realized [6] that dynamic correlations and susceptibilities
display very interesting non-equilibrium properties such as
those observed in glassy systems, for example ageing (see,
e.g., Ref. [7] for a review). In this respect, critical dynam-
ics provides a valuable, non-trivial but relatively simple
instance of dynamics with ageing, which can be charac-
terized to an extent actually out of reach in more general
cases of glassy dynamics.

2.1 Dynamic observables

The relaxation process in a system of large volume V
can be monitored by looking at the global order pa-
rameter Φ(t) = V −1

∑
x∈V ϕ(x, t), its average over the

possible realization of the thermal noise M(t) = 〈Φ(t)〉
and its two-time connected correlation function C(t, s) =
〈Φ(t)Φ(s)〉conn. In addition to C(t, s) it is useful to anal-
yse the linear response R(t, s) = δM(t)/δH(s)|H=0 of the
global order parameter M(t) to a magnetic perturbation
H(s) applied at time s < t. With the aim of highlight-
ing non-equilibrium behaviours, we consider the so-called
fluctuation-dissipation ratio (originally introduced in the
study of glasses [6,8])

X(t, s) ≡ TR(t, s)
∂sC(t, s)

, (1)

and in particular its limit for well-separated times

X∞ ≡ lim
t→∞ lim

s→∞ X(t, s). (2)

Indeed, for t, s 	 tEQ(T ) the fluctuation-dissipation the-
orem (see, e.g., Ref. [7]) implies X(t, s) = 1 and there-
fore X∞ = 1 whenever equilibrium is eventually attained,
which is always the case for T > Tc; X∞ �= 1, instead,
signals that the system evolves out of equilibrium even at
long times. In particular, for quenches from the disordered
initial state (M(t < 0) = 0) to T < Tc and H = 0 (domain
coarsening), scaling arguments yield X∞ = 0, leading to
the global picture in Figure 2 [9]. The value of X∞ for
T = Tc, on the other hand, cannot be fixed on the basis of
general arguments but it depends on the specific system
(actually on the universality class which it belongs to [9]).
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Note that, in contrast to the case of the non-equilibrium
dynamics for T < Tc (phase ordering) in which thermal
fluctuations do not affect the leading scaling behaviour [3],
the dynamics at T = Tc is actually driven by them and by
the emerging collective behaviour of the system. In recent
years X∞ has attracted a lot of attention in connection
to the fact that, formally, it might be used to define an
effective non-equilibrium temperature Teff for the system
(see, e.g., Ref. [7] and references therein). Indeed, at large
times, the rhs of equation (1) equals 1 (as required by
the equilibrium fluctuation-dissipation theorem) if one as-
sumes that the temperature of the system is not given by
the temperature T of the bath but by Teff = T/X∞. In the
case of mean-field glassy models it has been shown that
Teff is actually a bona fide thermodynamic temperature
which controls, e.g., the direction of heat flows [7]. In this
context, the non-equilibrium critical relaxation provides a
simple instance of slow dynamics in which such a property
can be tested beyond mean field [10].

To give answers to the various questions posed so far,
it is possible to fully exploit universality [9,11] in order
to characterize within a field-theoretical approach [11,12]
the non-equilibrium critical relaxation and the associ-
ated ageing phenomena (see Ref. [13] for a pedagogical
introduction). This approach allows a systematic analy-
sis of several aspects of these relaxation phenomena and
yields analytic predictions for scaling functions, expo-
nents, and amplitude ratios which characterize the scaling
behaviour of correlation and response functions at large
times, within different universality classes and dynamics.
In addition, it is possible to highlight dynamical crossovers
in C(t, s), R(t, s) [14,15] and in the persistence properties
of M(t) [16], due to different initial conditions. Within this
field-theoretical approach, for example, instead of study-
ing on a lattice Z

d the non-equilibrium dynamics of the
Ising model with spin-flip Glauber dynamics (which cap-
tures the behaviour of some anisotropic ferromagnets and
alloys), one studies the Landau-Ginzburg effective Hamil-
tonian H[ϕ] [1] for the order parameter ϕ(x, t) (x ∈ R

d)
with a suitable relaxational dynamics, known as Model
A [2]:

∂tϕ(x, t) = −D
δH[ϕ]

δϕ(x, t)
+ ζ(x, t). (3)

D is a kinetic coefficient and ζ(x, t) a zero-mean stochas-
tic Gaussian noise with 〈ζ(x, t)ζ(x′, t′)〉 = 2kBTD δ(x −
x′)δ(t− t′). The results presented below refer to this case.

2.2 Scaling behaviour

The renormalization-group analysis of Model A predicts
that R(t, s) and C(t, s) display the following scaling be-
haviours after a quench to T = Tc [17]:

s < t,

⎧
⎪⎪⎨

⎪⎪⎩

R(t, s) = ARta
(

t

s

)θ

FR(s/t, t/t0),

C(t, s) = ACta+1

(
t

s

)θ−1

FC(s/t, t/t0),
(4)

where a = (2 − η − z)/z is given in terms of well-known
universal equilibrium static (η) and dynamic (z) expo-
nents [1], θ is the non-equilibrium universal initial-slip
exponent [17], FR,C are universal scaling functions nor-
malized such that FR,C(0, 0) = 1. AR,C are non-universal
constants whereas t0 is a non-universal time scale set by
the initial value of the magnetization M0 ≡ M(t = 0) and
which displays a universal dependence on it

t0 = BmM
−1/κ
0 , (5)

where the universal scaling exponent κ > 0 is given, in
terms of static and dynamic equilibrium and non-equili-
brium exponents, by κ = θ+a+β/(νz). The non-universal
amplitude Bm can be fixed by suitable normalization con-
ditions (see Refs. [14,17] for details).

Interestingly enough, equations (4) and (5) indicate
that of the initial condition only the value M0 of the mag-
netization really matters in determining the scaling prop-
erties of the ensuing relaxation. A more detailed analysis
shows that correlations in the initial state (as long as they
are short ranged) do only contribute to corrections to the
scaling behaviour [17]. According to equation (4), the two-
time quantities C(t, s) and R(t, s) are homogeneous func-
tions of the three time scales t, s, and t0. In particular,
when s < t � t0, which is always the case if M0 = 0, the
scaling form of R (analogous one for C) becomes

R(t � t0, s) = ARta(t/s)θf
(0)
R (s/t), (6)

where f
(0)
R (x) = FR(x, 0). Equation (6) clearly displays

the scaling behaviour typical of ageing phenomena: As a
function of the time t at which the effect of the magnetic
perturbation is measured, the relaxation time is set by the
time s at which the perturbation was applied, which is also
referred to as the age of the system, being the time elapsed
since the quench. Upon increasing s the “response” to
the magnetic perturbation becomes increasingly slow. The
scaling behaviour in equation (6) was already spelled out
in reference [17] even tough the connection with ageing
has been realized some years later [6]. If M0 = 0 the scal-
ing in equation (6) (and analogous one for C) is valid also
at long times and allows one to express X∞ as an ampli-
tude ratio X∞ = AR/[(1 − θ)AC ] [9,11]. This amplitude
ratio turns out to be universal and therefore its value cal-
culated within the field-theoretical approach can be com-
pared with the corresponding results obtained on the ba-
sis of different models in the same universality class (e.g.,
Ising model with Glauber dynamics studied via Monte
Carlo simulations).

In the opposite limit of large times compared to t0,
i.e., t0 � s < t the scaling form of R (analogous one for
C) becomes [14]:

R(t, s 	 t0) = aRta(t/s)−βδ/(νz)f
(∞)
R (s/t), (7)

where f
(∞)
R (x) ∼ xθ+βδ/(νz)FR(x, y → ∞) and aR is de-

termined such that f
(∞)
R (0) = 1. Equation (7) displays

a scaling behaviour (with ageing) analogous to the one
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Fig. 3. Asymptotic fluctuation-dissipation ratio X∞ (see Eqs. (1) and (2)) as a function of the space dimensionality d, within
the Ising universality class with purely relaxational dynamics after a quench from a disorder (a) and magnetized (b) initial
state. The solid lines correspond to different Padé approximants of the two- (a) and one-loop (b) series obtained via the field-
theoretical dimensional expansion [14,19]. For d > 4 mean-field results become exact. The available numerical estimates obtained
via Monte Carlo simulations [9,14,20] are also indicated with the corresponding errorbars, if provided. The actual agreement
between analytical predictions and numerical results is quite good.

in equation (6), with the major difference that the non-
equilibrium exponent θ has been replaced by the combi-
nation −βδ/(νz) of equilibrium static and dynamic ex-
ponents. Also in this case X∞ can be expressed as an
amplitude ratio X∞ = aR/{[1+ βδ/(νz)]aC} where aC is
the non-universal constant in the scaling form of C which
corresponds to aR. According to equations (6) and (7), as
soon as the initial value M0 of the magnetization is non-
vanishing (quench from point B in Fig. 1), the asymptotic
behaviour for large times (and therefore the value of X∞)
changes compared to the case in which the initial value of
the magnetization is zero (quench from point A in Fig. 1).
An analogous conclusion has been drawn for different uni-
versality classes [14,15,18]. The full scaling functions in
equation (4) actually describe the crossover which occurs,
for a finite and fixed value of the magnetization M0 (and
therefore t0) when both times s and t increases from the
case s < t � t0 (described by Eq. (6)) to the asymptotic
case t0 � s < t (described by Eq. (7)).

The field-theoretical approach yields not only the pre-
dictions, previously discussed, for the scaling behaviour
and the associated exponents but also analytic expres-
sions for other relevant universal quantities such as the
fluctuation-dissipation ratio and its asymptotic limit X∞.
Here we focus on the specific case of the universality
class of the Ising model with Glauber dynamics, although
analogous predictions are available for different univer-
sality classes and dynamics (see Ref. [11] for a review).
In Figure 3 we report the dependence of the asymptotic
fluctuation-dissipation ratio X∞ (see Eqs. (1) and (2)) on
the space dimensionality d of the model, after a quench
from an initial state with M0 = 0 (a) and M0 �= 0
(b) to the critical point. The solid lines correspond to
different Padé approximants of the O(ε2) (a) [19] and
O(ε) (b) [14] series which have been calculated within
the field-theoretical ε-expansion, where ε = 4 − d. For
d > 4 the mean-field predictions X∞(M0 = 0) = 1/2 and
X∞(M0 �= 0) = 4/5 become exact. The available Monte
Carlo estimates in d = 2, 3, 4 [9,20] for M0 = 0 and in

d = 2 for M0 �= 0 [14], reported in Figures 3a and 3b, re-
spectively, are in quite good quantitative agreement with
the analytical predictions.

In summary, field-theoretical methods are a viable ap-
proach to investigate non-equilibrium and ageing phenom-
ena during critical relaxation in the bulk. The long-time
properties of the non-equilibrium relaxation turn out to
depend on the initial condition (e.g., T0) via the corre-
sponding magnetization M0 and novel crossovers in the
response, correlation functions and persistence properties
of M(t) [16] occur for finite M0, as confirmed by Monte
Carlo simulations. Within this approach one can also in-
vestigate the dependence of X∞ – and therefore of the
effective temperature Teff = T/X∞ – on the observable
used for its definition. Interestingly enough, one finds [10]
that X∞ (equivalently, Teff) is independent of it only if
the fluctuations in the system are of Gaussian nature (as
in mean-field or spherical models). This observation might
be of relevance to the case of more complex glassy systems.

In addition to the case illustrated in this Section, a
variety of different universality classes and dynamics, both
in the bulk and close to surfaces of semi-infinite systems
has been investigated in the literature [11,21].

3 Relaxation in confined geometries

In Section 2 we discussed some aspects of critical relax-
ation in bulk systems, with particular focus on the non-
equilibrium character of such a dynamics and on quan-
titative predictions for the Ising universality class with
purely relaxational dynamics. In this Section we consider,
instead, relaxation phenomena in confined geometries, fo-
cussing on fluctuation-induced forces and on the way they
build up in time after a thermal quench. Perhaps, the most
widely known example of such forces is the Casimir effect
in quantum electrodynamics (QED) [22]; less known is
the analogous effect which occurs in statistical physics,
discussed for the first time by Fisher and de Gennes [23].
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Indeed, whenever one confines a medium in which fluctu-
ations (of different physical nature) take place, effective
forces arise on the confining walls. The medium can be
constitued by, e.g., 4He, 4He/3He mixtures, classical bi-
nary mixtures, a Bose gas or even a magnetic material.
At variance with QED, in statistical physics such effective
forces have generically a finite range which is related to the
typical correlation length ξ of the confined fluctuations.
When this correlation length becomes much larger than
the typical microscopic length scale �micr in the system,
the Casimir-like force FC acting on the confining walls
takes a universal form

FC

A
=

kBT

Ld
ϑ(L/ξ), (8)

where A is the large transverse area of the
d − 1-dimensional walls, assumed to be parallel and
separated by a distance L. ϑ is a universal scaling
function and therefore it is actually determined by the
gross features of: (i) the system in the bulk and of
the fluctuating order parameter, as mentioned in the
Introduction, (ii) the gross features of the surfaces, which
– to some extent – are summarized by the boundary
conditions they impose on the order parameter ϕ(x, t)
(see, e.g., Ref. [24] for a review) and (iii) the geometry
of the boundaries. In what follows we shall focus on the
case of parallel and infinite confining walls, i.e., on the
film geometry. Due to universality, any minimal model
with the same gross features as the confined systems
we are interested in captures its universal behaviour,
including the Casimir force FC . This model is usually
specified in terms of an effective Hamiltonian H[ϕ]
which determines the equilibrium distribution function
Peq[ϕ] ∝ exp{−H[ϕ]/(kBT )} of the order parameter and
therefore the effective free energy F of the model. In
turn, close to the bulk critical temperature Tc and for
a system large enough (i.e., L 	 �micr), F decomposes
as the sum of a bulk term proportional to the volume
V = A × L of the system, one proportional to its surface
area A and a third one which yields the leading and
universal finite-size correction we are interested in:

F = kBTcA

×
[

Lfbulk(T ) + fsurf(T ) +
1

Ld−1
Θ(L/ξ) + . . .

]

, (9)

where higher-order terms in L−(d−1)×(�micr/L) have been
neglected. As a consequence of this decomposition, the
force F = −δF/δL acting on the confining walls is the
sum of a bulk term Fbulk and the Casimir force FC which
is actually the force acting on the confining walls of the
film when they are “immersed” in the fluctuating medium
(so that the contribution Fbulk acting on the two opposite
sides of each wall cancels, see Fig. 4). Note that this way of
determining the Casimir force FC via the equilibrium free
energy F gives no information about the force at a given
point in space. A different approach which, in principle,
provides such an information is based on the stress tensor
Tαβ(x). Tαβ(x) is a local functional of the order parame-
ter field ϕ(x), it is determined – in equilibrium – on the
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Fig. 4. Fluctuation-induced forces acting on two parallel walls
immersed in a fluctuating medium. The net force on each wall
is given by the Casimir term FC .
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Fig. 5. (a) The equilibrium thickness L of a wetting layer of
a 3He/4He mixture is affected by the Casimir force, as exper-
imentally demonstrated in reference [26]. (b) After a sudden
change of the temperature from the initial value Tin to Tfin,
the Casimir force is expected to change in time so that the
film, originally of thickness Lin, attains its final thickness Lfin

after a relaxation.

basis of H, and its expectation value on the equilibrium
distribution function Peq yields the force

F = kBTA〈T⊥⊥(x)〉eq, (10)

where T⊥⊥ is a suitable component of the stress tensor Tαβ

(see Ref. [25] for details). In equilibrium such an average
is actually independent of the position x at which it is cal-
culated; nonetheless it is tempting to interpret T⊥⊥(x) as
providing the local fluctuating pressure (per kBT ) at the
point x in space. Summing up, the equilibrium value of
FC can be determined via both the free energy F and the
stress tensor Tαβ(x). On the other hand, if one is inter-
ested in relaxation phenomena the definition via F is no
longer viable. Before discussing this point let us illustrate a
simple experimentally relevant setting in which the relax-
ation of FC might be observed. Indeed, consider the case
in which the Casimir force, in competition with dispersion
forces, determines the equilibrium thickness L of a wetting
layer of a binary 3He/4He mixture at a given temperature
T (see, e.g., Refs. [26,27]), as in Figure 5a. Measuring L as
a function of T allows a determination of the equilibrium
Casimir force. Upon changing suddenly the temperature
(and therefore the correlation length ξ of the concentra-
tion fluctuations in the mixture) the Casimir force FC

changes and the thickness of the layer relaxes towards its
final value (as sketched in Fig. 5b). Although experimen-
tal data for the evolution of L are not currently available,
some aspects of the dynamics of fluctuation-induced forces
are expected to be accessible in the near future. The evo-
lution of L is coupled to that one of the order parameter
field (and other relevant hydrodynamic quantities) which
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evolves in time under the effect of thermal fluctuations;
in turn, due to universality, this dynamics can be studied,
close to critical points, via simplified models (typically in
the form of Langevin evolution equations for the order pa-
rameter), as already mentioned in Section 2 (see Ref. [2]
for review). Instead of discussing the problem within the
experimental setup described above, in which L changes in
time, we assume that the fluctuating medium is confined
between two parallel walls at fixed distance L while the
force FC(t) acting on them is measured (Fig. 4). As in the
case of static behaviour, the presence of the confining walls
imposes boundary conditions on the time-dependent order
parameter field ϕ(x, t), the dynamics of which is affected
by the confinement. In order to determine the dynamics
of the Casimir force one has to understand how the lo-
cal order parameter translates into the local force which
can be measured, say, at the walls. One natural connec-
tion between the two is provided by the local stress which,
via the time-dependence of the order parameter, becomes
time dependent: Tαβ(x, t) ≡ Tαβ|ϕ(x) �→ϕ(x,t). Accordingly,
it is natural to define the dynamic force acting on the walls
W as [28] (compare with Eq. (10))

F (t) ≡ kBTA〈T⊥⊥(x ∈ W, t)〉noise (11)

where the average 〈. . .〉noise is taken over the possible real-
ization of the thermal noise. Heuristically, this amounts to
the assumption that at each time there is an “energy cost”
kBTAδL〈T⊥⊥〉 associated with the displacement δL of one
of the confining wall, which is actually determined, as in
equilibrium, by the order parameter field. Note that in
thermal equilibrium this definition renders the static force.
(See Ref. [29] for some proposed definitions of fluctuation-
induced forces in different non-equilibrium system.) At
variance with the equilibrium case, however, the local
pressure F/A might actually depend on the point x at
which it is measured. In what follows we assume trans-
lational invariance in the direction parallel to the walls,
yielding a spatially constant F on each of them. Finally,
in order to obtain the dynamic Casimir force FC(t) one
has to subtract from F (t) the corresponding bulk con-
tribution Fbulk(t) = limL→∞ F (t). To see this definition
at work we consider the case in which Tin 	 Tc, corre-
sponding to a correlation length so small that each of the
walls cannot feel the effect of the confinement imposed
by the other, resulting in FC(t < 0) = 0. For the final
temperature, instead, we assume Tfin = Tc, which even-
tually leads to a non-vanishing, long-ranged Casimir force
FC(t > 0) �= 0. (Note that, due to the critical-point shift
in the film geometry [30], Tc is not the critical temperature
of the film.) The analytic results illustrated below refer to
the case in which the confining walls impose Dirichlet (D:
ϕ(x ∈ W, t) = 0) or Neumann (N: ∂⊥ϕ(x ∈ W, t) = 0
where ∂⊥ is the derivative in the direction normal to the
wall) boundary conditions onto the order parameter field
ϕ. We assume that the effective Hamiltonian H which cap-
tures the equilibrium properties of the system is quadratic
in the order parameter (Gaussian model) and that the dy-
namics is purely dissipative (Model A). (We point out,
however, that the actual dynamic of fluids and binary

mixtures requires accounting for features which are not
present in Model A [2]). As a consequence of the quadratic
Hamiltonian, the relevant component of the stress tensor
can be expressed, in terms of the order parameter field, as
T⊥⊥(x, t) = (∂⊥ϕ(x, t))2/2 − (∇‖ϕ(x, t))2/2 where ∇‖ is
the gradient parallel to the wall (see, e.g., Ref. [25]).

In the long-time limit the film attains equilibrium and
the force takes different values depending on the combina-
tion of boundary conditions imposed by the two confining
walls:

FC

A
=

kBTc

Ld
×

{
Δ

(s)
d < 0, for DD, NN,

Δ
(ns)
d > 0, for DN, ND,

(12)

where, in three dimensions d = 3, the amplitudes for
symmetric and non-symmetric boundary conditions are
Δ

(s)
3 = −0.048 . . . and Δ

(ns)
3 = +0.036 . . ., respectively

(see, e.g., Ref. [25]). According to equation (12), the
Casimir force leads to attraction between the confining
walls if they impose the same boundary conditions on
the fluctuating order parameter (NN, DD), whereas re-
pulsion results from different boundary conditions (DN,
ND). Note that in the latter case the equilibrium force
FC acting on the two walls is the same, independently of
the fact that they impose different boundary conditions
on the field; in this sense they cannot be distinguished by
measuring FC .

In view of dynamical scaling, the relaxation of the force
acting on the confining walls after the thermal quench is
expected to depend on the temporal scaling variable t̂ =
(t/τ0)(ξ0/L)z via the dynamical scaling function ϑR(t̂),

FC(t)
A

=
kBTc

Ld
ϑR

(

t̂ =
t

τ0

(
ξ0

L

)z)

, (13)

where z = 2 is the dynamical exponent of the model
we are focussing on. At small and large times we recover
the initial vanishing force and its final equilibrium value
in equation (12), respectively, yielding ϑR(0) = 0 and
ϑR(t̂ → ∞) = Δ

(s,ns)
d , depending on the actual boundary

conditions. In Figure 6 we report the analytic predictions
for ϑR(t̂) (normalized to the corresponding equilibrium
value ϑR(t̂ → ∞)) for the case of symmetric DD, NN (a)
and non-symmetric DN, ND (b) boundary conditions. The
approach to the asymptotic value depends on the bound-
ary conditions but whereas in (a) it is independent of the
wall at which FC is measured (due to the symmetry), this
is no longer the case in (b). Accordingly, the dynamics of
FC provides a way of determining which one of the two
walls imposes D or N boundary condition in the DN (or
ND) case, even though this is not possible by simply look-
ing at the equilibrium force. Interestingly enough, the time
dependence is not monotonic in the case of the D wall.

The definition (11) allows one to study the effect of
an external perturbation on the Casimir force acting on
the confining walls, as discussed in detail in reference [28]
within the present model and DD boundary conditions.
In particular, if the external field (conjugate to the order
parameter) is localized in time and space, as indicated by
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∼ t̂−
d−1
2

∼ t̂−
d
2

DD

NN

1

0
0 1

d = 3

2

ϑR(t̂)

ϑR(∞)

t̂

(a)

DN

∼ t̂−
d
2

D

N

1

0
0 1

d = 3

2

∼ t̂−
d
2

ϑR(t̂)

ϑR(∞)

t̂

(b)

Fig. 6. Universal scaling function ϑR(t̂) of the Casimir force FC(t) in d = 3 after a quench from the high-temperature phase
to the critical point (see Eq. (13)) in the Gaussian model with purely relaxational dynamics. The finite-size scaling variable
associated with time is t̂ = (t/τ0)(ξ0/L)z . The scaling function ϑR has been normalized by its asymptotic (equilibrium) value
ϑR(t̂ → ∞) (see Eq. (12)). (a) ϑR(t̂) for symmetric boundary conditions (DD and NN), leading to an attractive Casimir force
which is equal on both the confining walls. (b) ϑR(t̂) for the case in which the walls impose different boundary conditions on the
order parameter (DN or ND). In contrast to equilibrium, the dynamic value and the qualitative features of the time dependence
of FC depend on the boundary condition imposed by the wall at which FC is measured.

the black dot in the side view in Figure 7a, the response
starts to propagate in the film, yielding asymmetric ef-
fects. At the very early stages, the response has practically
not yet reached the confining walls so that the force acting
on them is basically the equilibrium one corresponding to
a vanishing external field. In course of time the pertur-
bation induced by the field hits the confining walls and
correspondingly the force exerted on them increases (re-
ducing the equilibrium attraction), with different magni-
tude at different points. Finally, because of the relaxation
character of the dynamics, the perturbation induced by
the external field vanishes in the limit of long times and
the effective force reaches again its equilibrium value. In
Figure 7b we report a sketch of the distribution of the re-
sulting stress on the confining wall at time t̂ = 0.096 in
the case in which the impulse was applied at time t̂ = 0
in the position indicated in Figure 7a. The system is as-
sumed to be at the bulk critical temperature Tc. Due to
the different distances from the two walls, the maximum
force for x = 0 is attained earlier on the left wall com-
pared to the right one. (We refer the reader to Ref. [28]
for further details.)

In summary, we have proposed a definition of the dy-
namic Casimir force FC via the local and time-dependent
stress tensor Tαβ (see Eq. (11)), which allows one to study
the equilibrium and non-equilibrium dynamics of FC in a
variety of different cases, dynamics and boundary condi-
tions. The analysis of very simple models reveals already
a quite rich behaviour. However, it is desirable to estab-
lish a clearer connection between this definition of the dy-
namic Casimir force and the force that can be measured
directly in actual experiments and molecular dynamics
simulations.

�
�

�

���

(a) (b)

Fig. 7. Effect of an external field on the Casimir force acting on
the confining walls. The impulse field is applied at time t̂ = 0
and distance L/3 from the left wall (a). The response of the
medium is such that the Casimir force locally increases com-
pared to its (negative) equilibrium value, reaches a maximum
and then, due to the relaxational character of the dynamics,
decreases again to its equilibrium value. The spatial depen-
dence of the total local force at time t̂ = 0.096 for the critical
Gaussian model with DD boundary conditions is sketched in
(b), where the colorcode indicates increasing force from bottom
to top, compared to the equilibrium value. The magnitude of
the field-induced effect depends on the square of the strength
of the applied perturbation (see Ref. [28] for details).

4 Perspectives

In the previous sections we have reviewed some aspects
of relaxation phenomena in bulk and confined critical sys-
tems. Here we mention some issues which in our opinion
deserve further investigation.

It is well known that surfaces affect locally both the
static and dynamic critical behaviour [24,31] and there-
fore we expect that also non-equilibrium properties such
as the scaling behavior of two-time response and correla-
tion functions after a quench are accordingly modified. In
spite of some available Monte Carlo data and preliminary
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analyses [11,32], a detailed and quantitative study within
the field-theoretical approach is still lacking. The slow col-
lective relaxation phenomena discussed in Section 2 are
due to the divergence of the equilibration time upon ap-
proaching an equilibrium critical point (characterized, e.g.,
by detailed balance). A qualitatively similar behaviour,
however, has to be expected also in the cases in which
the system undergoes a non-equilibrium phase transi-
tion of dynamical nature (e.g., reaction-diffusion systems,
see Ref. [33] and references therein). Also in this case,
field-theoretical methods provide valuable insight into the
problem [34] and it would be desirable to extend the anal-
ysis to other relevant non-equilibrium universality classes.
A particularly intriguing question is how (and if) the
non-equilibrium critical relaxation phenomena in the bulk
change when quantum fluctuations come into play, e.g.,
upon approaching a quantum phase transition point.

The study of the dynamics of fluctuation-induced
forces is still far from being satisfactory and complete. In
order to allow a comparison with experimentally relevant
settings (e.g., involving colloidal particles in suspension)
it is particularly important and urgent to explore the ef-
fects of geometries and boundary conditions different from
those discussed here and to consider dynamics which are
more suitable for the description of binary fluid mixtures,
on which most of the experiments are based.

I am grateful to P. Calabrese, S. Dietrich, F. Krzakala, A. Ma-
cio�lek, R. Paul and G. Schehr for the stimulating collaborations
which lead to some of the results presented here.
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(2000); C. Godrèche, J.M. Luck, J. Phys.: Condens. Matter
14, 1589 (2002)

10. P. Calabrese, A. Gambassi, J. Stat. Mech.: Theor. Exp.
P07013, (2004)

11. P. Calabrese, A. Gambassi, J. Phys. A: Math. Gen. 38,
R133 (2005)

12. P. Calabrese, A. Gambassi, Phys. Rev. E 65, 066120
(2002); P. Calabrese, A. Gambassi, Acta Phys. Slov. 52,
335 (2002)

13. A. Gambassi, J. Phys.: Conf. Series 40, 13 (2006)
14. P. Calabrese, A. Gambassi, F. Krzakala, J. Stat. Mech.:

Theor. Exp. P06016 (2006)
15. P. Calabrese, A. Gambassi, J. Stat. Mech.: Theor. Exp.

P01001, (2007)
16. R. Paul, A. Gambassi, G. Schehr, Europhys. Lett. 78,

10007 (2007)
17. H.K. Janssen, B. Schaub, B. Schmittmann, Z. Phys. B

73, 539 (1989); H.K. Janssen, in From Phase Transitions
to Chaos– Topics in Modern Statistical Physics, edited by
G. Györgyi et al. (World Scientific, Singapore 1992).

18. A.A. Fedorenko, S. Trimper, Europhys. Lett. 74, 89
(2006); A. Annibale, P. Sollich, J. Phys. A: Math. Gen.
39, 2853 (2006); A. Garriga, P. Sollich, I. Pagonabarraga,
F. Ritort, Phys. Rev. E 72, 056114 (2005)

19. P. Calabrese, A. Gambassi, Phys. Rev. E 66, 066101 (2002)
20. P. Mayer, L. Berthier, J.P. Garrahan, P. Sollich, Phys.

Rev. E 68, 016116 (2003); E. Lippiello, F. Corberi,
M. Zannetti, Phys. Rev. E 74, 041113 (2006); see Table 1
in reference [11] for a comprehensive list of Monte Carlo
studies

21. P. Calabrese, A. Gambassi, Phys. Rev. B 66, 212407
(2002); P. Calabrese, A. Gambassi, Phys. Rev. E 67,
036111 (2003)

22. H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet. B 51, 793
(1948)

23. M.E. Fisher, P.G. de Gennes, C.R. Acad. Sci. Paris Ser. B
287, 207 (1978)

24. H.W. Diehl, in Phase Transitions and Critical Phenomena,
edited by C. Domb, J.L. Lebowitz, Vol. 10 (Academic
Press, London 1986); H.W. Diehl, Int. J. Mod. Phys. B
11, 3503 (1997)

25. M. Krech, Casimir Effect in Critical Systems (World
Scientific, Singapore 1994); J.G. Brankov, D.M. Danchev,
N.S. Tonchev, Theory of Critical Phenomena in Finite-size
Systems: Scaling and Quantum Effects (World Scientific,
Singapore 2000)

26. R. Garcia, M.H.W. Chan, Phys. Rev. Lett. 88, 086101
(2002)

27. A. Macio�lek, A. Gambassi, S. Dietrich, Phys. Rev. E 76,
031124 (2007)

28. A. Gambassi, S. Dietrich, J. Stat. Phys. 123, 929 (2006)
29. D. Bartolo, A. Ajdari, J.-B. Fournier, Phys. Rev.

E 67, (2003) 061112; A. Najafi, R. Golestanian,
arXiv:cond-mat/0308373v1 (2003). Part of this work has
been published in Europhys. Lett. 68, 776 (2004); R. Brito,
U. Marini Bettolo Marconi, R. Soto, Phys. Rev. E 76,
011113 (2007)

30. H. Nakanishi, M.E. Fisher, J. Chem. Phys. 78, 3279 (1983)
31. M. Pleimling, J. Phys. A: Math. Gen. 37, R79 (2004)
32. M. Pleimling, Phys. Rev. B 70, 104401 (2004); F.

Baumann, M. Pleimling, J. Phys. A: Math. Gen. 39, 1981
(2006); M. Pleimling, Phys. Rev. B 76, 104422 (2007)

33. M. Henkel, J. Phys.: Condens. Matter 19, 065101 (2007)
34. F. Baumann, A. Gambassi, J. Stat. Mech.: Theor. Exp.

P01002 (2007)


	Introduction
	Non-equilibrium relaxation in the bulk
	Relaxation in confined geometries
	Perspectives
	References

