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Abstract. We report on a new, environment-friendly synthesis route to produce Fe3O4

magnetic nanoparticles (MNPs) from extracts of the plants Vanilla planifolia and

Cinnamomun verum. These aqueous plants extracts have the double function of

reducing agents due to their phenolic groups, and also capping materials through the -

OH bonding over the MNPs surface. The resulting MNPs have average sizes ≈10-14 nm

with a core-shell Fe3O4-Fe2O3 structure due to surface oxidation driven by the phenolic

groups through OH- covalent bonding. Saturation magnetization values of MS =70.84

emu/g (C. verum) and MS=59.45 emu/g (V. planifolia) are among the largest reported so

far from biosynthetic samples. Electron microscopy and infrared spectroscopy data

showed a thin organic layer coating the Fe3O4@Fe2O3 MNPs, composed by the

phenolic groups from the starting extracts of both C. verum and V. planifolia. A proof of

concept for these MNPs as heating agents in magnetic hyperthermia experiments

(570kHz, 23.9 kA/m) was performed in-vitro, showing their efficacy to induce cell

death on BV2 microglial cells after 30 min at a target temperature T=46oC.

Key words: green synthesis, iron oxide, magnetic nanoparticles, bioreduction, magnetic hyperthermia.
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1. Introduction

Iron oxide magnetic nanoparticles (MNPs) can be obtained by chemical, physical and biological

methods (1) improving their properties at low scale. These materials have magnetite core with

cubic inverse spinel structure, oxygen forming fcc close packing and divalent Fe+2 ions

occupying tetrahedral sites and trivalent Fe+3 ions in octahedral sites (2). Deviations from the ½

Fe+2: Fe+3 of the pure magnetite phase by oxidation of Fe2+ to Fe3+ usually results in -Fe2O3

(maghemite phase) at the nanoparticle’s surface. Maghemite is a cation-deficient spinel

represented by the formula [Fe3+]A[Fe2+
1-3XFe3+

1+2XX]BO4 where represents iron vacancies

originated during the synthesis process and/or subsequent oxidation. Typically, surface

oxidation of Fe3O4 MNPs would result in a Fe3O4@-Fe2O3 core-shell structure. These MNPs

have high potential in the biomedical field, mainly for drug delivery (3), magnetic resonance

imaging (4) and magnetic hyperthermia (5).

This wide range of applications has motivated the development of quite a large number of

synthesis routes including ion-sputtering (6), sol-gel technique (7), mechano-chemical

activation (8), co-precipitation (9), laser ablation (10), hydrothermal (11) and ultrasonic (12). To

ensure biocompatibility for biomedical applications, these methods require tedious separation

procedures to remove hazardous chemicals at their surface from reactants or byproducts of the

synthesis route (13) and thus developing a safe, ecofriendly approach has been a challenge of

nanotechnology research (14). In recent years eco-friendly synthesis of metallic nanoparticles

has been reported (15, 16) based on the use of green materials like biomass, plant extracts or

reducing biomolecules, a process known as bio-reduction or biosynthesis (17). A list of the

metallic nanoparticles obtained by biosynthesis employing plants biomass or extracts are

available in reviews, reported by Amit et al. (15), Mohanpuria et al. (18), Herlekar et al. (19)

and Quester et al. (20).  Regarding the synthesis of MNPs, strategies using living plants (14, 21,

22), dried plant biomass or their extract (14) have been proposed. Compared to biological

synthesis (i.e., using fungi, microorganisms, mammalian cells or enzymes) the plants aqueous

extracts are advantageous because they do not require elaborate processes for maintaining cell

cultures and are easy to scale up (17).

Successful synthesis of iron nanoparticles have been reported using tea leafs (23, 24), alfalfa

biomass (25) and sorghum bran extracts (26). Plant extracts provide the reducing agents from a

natural source in replacement of the generally more toxic synthetic reactants (15, 27). There are

many plant extracts containing biomolecules with alcoholic functional groups that influence the

final Fe3O4 MNP morphology (20, 28). Active biological phytochemicals components (i.e.,

polyphenol compounds, tannins, flavonoids, carbohydrates etc.) present in aqueous plant

extracts act as reducing and capping agents during MNP growth (18, 22) and, depending on the
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concentration of phytochemicals of each plant, can react onto metal ions in shorter times

(minutes to hours) compared to similar molecules from microorganisms (14, 29, 30).

Some of the biomolecules present in extracts of C. camphora have a protective role and might

also influence the final shape of Au and Ag nanoparticles synthesized from their biomass (28).

These biomolecules in aqueous medium act as capping agents avoiding the collapse of growing

nanostructures, while the polyol and soluble heterocyclic components are mainly responsible for

the bio-reduction of metallic ions in solution (28). In general, the resulting organically-coated

surfaces with bioactive properties is one of the main advantages of biosynthetic routes for

MNPs, making this synthesis strategy useful for biomedical applications (31). Their lower

toxicity has been profited to use these MNPs as contrast agents in magnetic resonance imaging

(MRI) constituting an improvement over conventional iodine-based contrast agents (31),(32).

Polyphenols have received substantial attention for neuroprotective therapies based on the

known anti-oxidative and anti-inflammatory properties of flavonoids and catechins (33-35). On

a molecular level, the potential therapeutic effects of these molecules to age-related brain

diseases is related to their capacity to deter the functional degeneration of amyloid-β peptides in

diseases like Alzheimer, Parkinson´s and amyotrophic lateral sclerosis. There is already

reported evidence in vivo regarding the protective effects of flavonoids in Parkinson’s and

Huntington’s diseases (33, 35). There is consensus on the fact that these molecules can

slow/impede the proliferation of amyloid-β peptides and/or transformation into neurotoxic

aggregates. In addition, there are reports on the use of MNPs as carriers of polyphenols in vitro

that demonstrated antineoplastic efficacy of curcumin conjugates on breast cancer, glioma, and

pancreas xenografts models (36). From these considerations, naturally-produced MNPs with

polyphenol surface coatings are expected to contribute to new therapeutic strategies (33). Green

synthesis of MNPs is an alternative scarcely explored for hyperthermia treatment, mainly due to

high-cost production and immunological reactions of MNPs from bacterial origin (19). Plant

based synthesis especially those from their extracts offer a promising alternative. Their essential

oils contain small hydrophobic terpenoid or phenolic compounds that can easily permeate cell

membrane,(37) becoming an alternative accessible and renewable carbon source for the

synthesis of metallic nanoparticles. Previous reports have shown some control on the final sizes

and morphologies (spherical, platelets, and nanorods) of MNPs by control within the aqueous

extracts (pH, temperature, inert atmosphere, etc.) and, for polyphenols, a key control parameter

is concentration during processing (14, 17, 30).

Here, we report on the viability of polyphenols and organic acids to obtain MNPs, exemplified

in two different systems synthesized by an eco-friendly method in aqueous extracts of: (1)

Cinnamomun verum and (2) Vanilla planifolia (natural and synthetic). We show that this is an

easy and environmentally clean synthesis route for MNPs, and we present a complete

characterization of their physical properties and provide a proof of concept in vitro for their
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potential application in magnetic hyperthermia.

2. Materials and methods.

2.1 Materials.

Ferric trichloride hexahydrate (FeCl36H2O) (reagent grade, >98%) and ferric dichloride

tetrahydrate (FeCl24H2O) (puriss, p.a., >99%) and sodium hydroxide (NaOH) (reagent grade,

>98%) were purchased from Sigma-Aldrich Reagent Co., all reagents were used directly

without further purification. C. verum (Sri Lanka) and V. planifolia cured pods were obtained

from local market in Mexico. Vanilla commercial concentrated extract (SV) was obtained from

“La Reyna”, Jose Acateno and Papantla Ver. Mexico region. Deionized water (resistivity=18

MΩcm) was used in all experiments.

2.2 Cinnamon and vanilla natural extract preparation.

Starting natural materials used were cinnamon bark dried and cured vanilla pods, since previous

reports showed that dried leaves enhance the extraction process and produce extracts with better

antioxidant properties than non-dried leaves (24, 38). A low cost, ecofriendly route was

developed so that extraction solvents were prepared easily in aqueous solution media.

Additionally, the resulting solvents exhibited a high capacity to extract polyphenols safely (39).

Dried and grinded C. verum bark powder (50 g), was mixed with 200 ml of deionized water and

treated for 3 h at 80°C by steam distillation. After settling to cold down to room temperature,

cinnamon aqueous extract (C) solution was filtered through Nylon 0.22 um filter to remove

cellular debris, and stored for a week at 4°C for further use. For vanilla extract (VP) 10 grams of

Vanilla planifolia cured beans were extracted by the same procedure until the color of aqueous

solution changed from watery to yellow. The extract with the volatile oil was filtered and stored

as the former.

2.3 Synthesis of Fe3O4 MNPs.

Fe3O4 MNPs were synthesized by a green co-precipitation method (40) with some

modifications. A starting solution of 0.02 M FeCl36H2O and 0.01 M FeCl24H2O were

dissolved separately in deionized water for 30 minutes. Subsequently ½ Fe+2: Fe+3 solution was

mixed and fulfilled to 100 ml with deionized water and controlled heating at 80°C under

agitation and atmospheric pressure under N2 atmosphere. When the temperature was reached, 5

ml of the aqueous extract was added drop wise. The color of the solution changed to reddish-

brown. After 30 minutes 1.5 M NaOH was added continuously to allow the uniform

precipitation of black MNPs. The mixture was rapidly cooled down with ice, and MNPs were

obtained by magnetic decantation. Final MNPs either cinnamon (C-MNPs), vanilla pods (VP-
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MNPs) aqueous extracts or commercial/synthetic vanilla (SV-MNPs), were washed tree times

with deionized water until pH 7 was reached. The iron contents in all samples were measured

through a thiocyanate complexation assay. In order to compare green synthesis performance, a

chemical synthesis method was done by using tetraethylammonium hydroxide (A-MNPs).

2.5 Physical characterization

Magnetization hysteresis loops were measured for all samples using a vibrating sample

magnetometer (VSM, Lake Shore 7400 Series) at room temperature. The hysteresis loops, MS

(emu/g) vs H (Oe) were acquired  for applied fields -12,000  H  +12,000 Oe. The topography

and magnetic domains analysis of nanoparticles surface were done by using scanning probe

microscope (SPM) JEOL-JSPM-5200 in AFM-MFM Magnetic Force Microscope (MFM)

mode. For each sample, powder was confined in a carbon adhesive tape (41). Magnetic tip

NSC14, Co-Cr/15 Micromasch was previously magnetized to record the magnetic domains at

180 KHz with lift height interaction of 0-18.605 nm and output of 0.025 Amp/V. The 2D and

3D images, profiles and domains measurements were processed with WinSPM Process version

2.0 software JEOL Ltd.

X-ray diffraction (XRD) patterns of Fe3O4@Fe2O3 MNPs powder were obtained in a Rigaku

diffractometer (Rigaku-Smart Lab) equipped Cu K radiation with wavelength of 1.54 Å

operating at 35 kV acceleration voltage and current of 25 mA. The data were collected with

Bragg angle 2θ in range 10o - 80o at a scanning rate of 0.02 º/s. The diffraction patterns were

compared with the Data Base Powder Diffraction File, JCPDS-PDF PDF-19-0629, release

2012, International Center for Diffraction Data ICCD (42). The average crystallite size was

estimated using the Debye-Scherrer's formula (d=0.9 /  cos θ), were d is the crystal size,  is

the wavelength for CuK, K the constant shape (0.89) and  is the full width at half maximum

(FWHM). PowderCell 2.0 software was used to compare the experimental and theoretical data

for d value calculation, corresponding to PDF-19-0629; inverse spatial group Fd3m (227)

inverse spinel FCC structure.

2.6 Determination of iron contents in the magnetic colloids.

The Fe concentration was determined by UV-Vis spectrophotometry through the thiocyanate

complexation reaction (43, 44):

MNPs were dissolved in HCl 6 M-HNO3 (65%) at 50°C during 2 hours until the complete

oxidation of Fe2+ ions to Fe3+. Potassium thiocyanate 1.5 M was then added to the Fe3+ solution

to form the iron-thiocyanate complex, which has a maximum absorbance at 478 nm wavelength.
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The iron concentration was determined by comparing the sample absorbance to a calibration

iron curve (44).

2.7 Specific power absorption (SPA) measurements.

The SPA of the as prepared magnetic colloids was measured by triplicate in a commercial ac

applicator (DM1, nB nanoscale Biomagnetics, Spain), with field amplitudes H0 in the range

3.97 k Am-1  H0  23.9 k Am-1 (1 Oe = 79.5775 Am-1) at fixed frequency f = 570 kHz. In vitro

experiments were performed in BV-2 cells at fixed frequency f=570 kHz, with an experimental

setup designed for constant target temperature T = 46 °C, achieved by a feedback control of the

field intensity H0. The samples were conditioned into a quasi-adiabatic space of small volume

(~0.5 ml) forming compact pellets of 2-8×106 cells. The power released by the magnetic colloid

per unit of mass of iron oxide content is given by the specific power absorption (SPA)

expressed in W/g Fe3O4. The SPA is the rate of energy converted into heat per unit mass of

magnetic material subjected to an alternating magnetic field (45), and can be calculated as:

= ∆∆ Eq. (4)

where l is the density of the carrier liquid (i.e. water) and cl its specific heat capacity (cwater=

4.18 J/g. K);  is the MNPs mass concentration  =mNP/Vl of the colloid containing a mass of

nanoparticles mNP (in mg) in a volume Vl (in mL). The SPA per gram of the magnetic colloid,

was obtained from the initial slope of T vs. time data, after the ∆T increment during the first t

≈ 10-20 seconds were measured (45).

2.8 Cell culture.

Immortalized brain microglia murine cell line BV-2 (ATCC®CRL-2467TM) were cultured in

Dulbecco´s modified Eagle´s medium supplemented with 10 % fetal bovine serum, 100 IU/ml

penicillin, 100 g/ml streptomycin and 2 mM L-glutamine. Cells were maintained at 37 °C in

saturated humidified atmosphere containing 95% air and 5% CO2.

2.9 Cell viability assays.

For the viability assays, 3 x 10 5 cells in exponential growth phase were seeded into a 6 well

plate and incubated for 24 hour as described previously. The experiments were done by

triplicate. The culture media was added with increasing MNPs concentrations (25, 50 and 100

g/ml) and incubated for 24 h. After 48 h cells were harvested and trypan blue staining was

performed to estimate live (none-stained) and dead (blue-stained) cells number. In the assay 30

Page 6 of 32AUTHOR SUBMITTED MANUSCRIPT - NANO-116170.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



l of cell samples were diluted into 2% Trypan blue dye (1:1). The viable and non-viable cells

were counted in a Neubauer chamber (Blau Brand Germany, 718605). Cell density and viability

was calculated according to Calatayud et al. 2014 (44). The adhered cells to the culture plate

and none-adhered cells were considered in the calculations.

2.10 Quantification of uploaded MNPs by BV-2 cells.

In order to evaluate the MNPs cellular uptake, 3 x 10 5 cells were seeded into 6 well plate by

triplicate. After 24 h of incubation the media was replaced and cells were co-incubated with

increasing amount of MNPs (0, 25, 50 and 100 g/ml). At 48 h the cells were harvested and

washed with PBS (3 x 2ml), tripsinized, and accounted by trypan blue assay (only adhered

cells). Then the pellet was washed with MilliQ water and centrifuged (1200 RPM) to

completely remove media. The pellet was digested in HCl 6 M-HNO3 (65%) solution for

thiocyanate assay and the amount of uptaken (incorporated or strongly membrane bound) MNPs

by BV-2 cells was quantified by UV-VIS absorption spectroscopy. The doubling time (TD) of

BV2 cells was determined in order to assess the optimal incubation range interval with MNPs

(46).

2.11 Alternating Magnetic Field Measurements (AMF).

For hyperthermia in vitro experiments BV-2 cells were grown up to confluent state into a 75

cm2 culture flask. Cells were cultured overnight at 37 ºC with 100 g/ml of MNPs. The next day

cells were washed PBS (3 x 2ml), detached, centrifuged and re-suspended in 150 l of

complemented DMEM in a PCR tube. Each sample consisted of >1.8 x107 cells. To provide a

precise control of the heat delivered during magnetic hyperthermia (MHT) experiments a

concentration of 100 g/ml of MNPs was tested seeding 3x106 cells previously. Cell pellets

undergone an AMF treatment in a commercial ac applicator (model DM100 by nanoscale

Biomagnetics S.L., Spain) working at fixed f= 570 kHz and field amplitude of 300 Gauss (23.9

kA/m) with a constant target-temperature program feedback at 46 ºC set-point for 30 minutes.

Temperature was maintained through a feedback-based controller field amplitude modulation.

The applicator is equipped with an adiabatic space (~ 0.5 ml) for measurements in liquid phase.

Temperature was measured using a fiber-optic thermometer and placed in the center of the

pellet. After MHT test, cells were sub-cultured for 6 h. Then cell viability was determined by

Trypan blue assay. Finally iron concentration was measured through thiocyanate assay by UV-

VIS.
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2.12 Transmission Electron Microscopy and Dual Beam FIB-SEM.

a) Magnetite samples were diluted in ethanol 70% and sonicated 15 min. Drops of samples were

supported in formvar carbon copper grids and were observed by Transmission Electron

Microscopy (TEM) JEOL, JEM2010, LaB6, at 200keV at CINVESTAV-IPN and FEI Tecnai

T20, at 200 keV at INA-UNIZAR. The average particle size was determined by measuring the

largest dimension in 200 particles. Their distribution was fitted to Gauss function.

b) The cells subjected to MHT experiment were fixed with glutaraldehyde (4%) at 4 ºC for 2 h.

Then washed once with cacodylate buffer (0.2M, pH=7.2) and resuspended in glutaraldehyde

(2%) at 4 ºC for 4 h. Then were postfixed 1 h with 2% osmium tetraoxide containing 2.5%

potassium cyanoferrate, and gradually dehydrated in acetone (30-100%). Staning was carried

out with uranyless in acetone 50% during dehydration and finally embedded in Epoxi resin.

Thin sections (70 nm) were placed onto 200 mesh copper grids, and counterstained with lead

citrate before examination with a FEI Tecnai T20 Transmission electron microscope at 200 kV.

For dual beam FIB-SEM a drop of the dehydrated samples was placed in a cover slip and

sputter coated with gold-platinum. SEM images were recorded at 5 and 30 kV using a FEG

column. A combined Ga-based 30kV (0.4 nA) ion beam was used to cross section single cells.

EDS-X spectrometry was performed to identify intracellular iron nanoparticles.
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Figure 1. a) XRD patterns of Fe3O4@Fe2O3 MNPs from aqueous extracts of C. verum (C-MNPs); V.
planifolia vanilla pods (VP-MNPs) and synthetic vanilla (SV-MNPs). b) Amplification of the 2Ɵ ≈35.5º
region showing the shift of the diffracted (220), (311), (400), (422), (511) and (400) crystallographic
planes from the expected values for Fe3O4 in A-MNPs (not oxidized) to the -Fe2O3 in phenolic-coated
MNPs. c) A schematic representation of the surface oxidation of VP-MNPs.

3. Results

3.1. Physical properties of the MNPs

The XRD analysis of all samples (C-MNPs, VP-MNPs and SV-MNPs) showed the main

magnetite peaks (A-MNPs) (2 positions at 30o (220), 35.19o (311), 43º (400), 53º (422), 57º

(333,511) and 62º (440) (Figure 1a). These peaks were found to be slightly displaced (Figure

1b) to maghemite (47) likely originated from surface oxidation during the synthesis (Figure 1c).

The main crystalline growth orientation was the (311) diffraction plane. A non-linear slope in

the baseline of the patterns was observed, assigned to the non-crystalline contribution from

remaining biomolecules in the samples due to covalent bonding between iron ions and

polyphenols during reduction, growth and capping of MNPs (Figure 1a). The mean particle

sizes< >, estimated from broadening of the main XRD peaks, were < >= 14 for C-

MNPs (C. verum) and < >= 12 for SV-MNPs and VP-MNPs (V. planifolia synthetic

vanilla and pods extract, respectively).
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A specific feature of the present synthesis method is that the phenolic biomolecules of the

natural extracts used yield the formation of surface-oxidized magnetite MNPs, i.e., a core-shell

Fe3O4-Fe2O3 configuration. This oxidation is expected from the concentration of phenols in the

starting biomass and consistent with the small changes of the (average) unit cell parameters: a=

8.355 Å in -VP-MNPs, and a=8.366 Å in C-MNPs (see Table 1). These changes with respect to

the parameters of Fe3O4 are consistent to the Fe2+ vacancies of the -Fe2O3 structure at the

MNPs surface. This oxidation is expected since the extract concentration used during synthesis

can oxidize the MNP surface and produce Fe vacancies during processing. A consequence of

this oxidized -Fe2O3 layer at the MNPs surface is a higher stability both in time and against

chemical attacks, a clear advantage for potential biomedical applications (48).

Table I. Physical parameters of Fe3O4@Fe2O3 MNPs

Sample Plant
extract

Base particle size
(nm)

cell parameter
(Å)

domain
size

(nm)

XRD TEM XRD TEM MFM Hc

(Oe)

MS

(emu/g)
SPA

(W/g Fe3O4)

A-MNPs None (CH3CH2)4NOH 13 13.3 ± 1.4 8.390 8.374 4.0 8.66 68.16 195.0 a

C-MNPs Cinnamon
(C)

NaOH 14 14.4± 3.5 8.366 8.382 5-6 62.81 70.84 335.69

SV-MNPs Synthetic
vanilla (SV)

NaOH 12 14.0± 3.1 8.365 8.387 2-3 37.54 60.80 78.9

VP-MNPs Vanilla pods
(VP)

NaOH 12 10.2± 2.7 8.355 8.372 3.5 13.71 59.45 234.0

a From reference (49)
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Figure 2. FTIR spectra of MNPs synthesized with C and VP extracts. The
bands at 1536 to 1060 cm-1 indicate the presence of aromatic
compounds on the MNPs surface.

The FT-IR spectra (Figure 2) showed the vibrational stretching mode of Fe-O bond at 572 cm-1

characteristic of magnetite (Fe3O4), oxide phase formation (50). The broad area band absorption

at 3400 cm-1 is due to stretching vibrations from O-H bonding. The associated peak at 1536 cm-

1, indicates the chemical compound is likely to be a simple hydroxyl compound (phenol). The

C-H stretching vibrations (3000 cm-1) overlap the stretching vibration of O-H. The set of lower

frequency bands in the range from 1536 to 1060 cm-1, are consistent with unsaturated bonds

(C=C) from aromatic compounds, due to phenol groups or quinone. These are involved as

electron donors during the bio-reduction process (51). Between this set aldehyde groups (C-H

torsion) at 1380 cm-1 and carboxylic acids (COO-) at 1460-1265 cm-1 signals are located. The

band at 1640 cm-1 is associated to carbonyl groups from organic base in chemical synthesis (A-

MNPs). The surface oxidation of VP-MNPs and SV-MNPs was promoted in SV and VP

extracts as observed by band splitting and displacement from 572 cm-1 to 642 cm-1 in VP-MNPs

and 696 cm-1 in SV-MNPs. Whereas A-MNPs and C-MNPs remained at 572 cm-1 meaning that

C natural extract exerted a better protective oxidation effect.

Page 11 of 32 AUTHOR SUBMITTED MANUSCRIPT - NANO-116170.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Figure 3. TEM micrographs of MNPs synthetized with (a) tetraethylammonium hydroxide (b) C aqueous
extract (c) SV extract and (d) VP aqueous extract. In all synthesis with extracts, particles are surrounded
by an external organic coating (arrows, zoom in images), which slightly decreases their agglomeration.
Histograms of mean particle size diameter values were fitted with a Gaussian function.

(311)
d= 2.5 Å

d

a
(111)

d= 4.8 Å

b
(220)

d= 2.9 Å

c
(111)

d= 4.8 Å
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The morphology and size of the Fe3O4@Fe2O3 MNPs observed in transmission electron

microscopy (TEM) images showed a common quasi-spherical (spheres with irregular borders)

morphology of all MNPs (Figure 3). For C-MNPs, SV-MNPs and VP-MNPs an amorphous

surface layer of t5-9 nm thickness (yellow arrows in Figure 3b, c and d) corresponding to

polyphenols from the aqueous plant extract, in agreement with the spectral evidence from FT-

IR.

The polymer layer around the C-MNPs magnetic cores was thinner (t=3.45 nm) than for VP-

MNPs (t=5.98-8.54 nm). The mean particle sizes <d> as calculated from the fit of size

histograms were 14.39±1.7 nm in C-MNPs (from cinnamon extract), 14.01±3.0 nm in SV-

MNPs (from synthetic vanilla) and 10.15±2.7 nm in VP-MNPs (from vanilla pods extract). All

within the particle size range of a chemical synthesis using tetraethylammonium hydroxide (A-

MNPs) as a reducing agent (Table 1).  The narrower particle size distribution was obtained with

vanilla commercial extract, maybe due to a higher concentration of synthetic polyphenols or

food additives commonly used in commercial vanilla products (52). This size distribution was

similar to common synthetic nanoparticles from chemical synthesis (A-MNPs), where highly

purified substances are used. Meanwhile both C and VP aqueous extracts yielded a wider

particle size distribution. This effect could be attributed to the complex mixture of biomolecules

(polyphenols, reducing sugars, etc.) common in aqueous extracts (15, 24, 26). Those in turn also

allowed the formation of several nanoparticles shapes as reported by other biosynthesis methods

using different plant aqueous extracts (28, 53). The reducing power of polyphenols mixture in

Fe+2 iron solution has an effect in the lattice as compared with A-MNPs parameter (d=4.848 Å).

Those have interplanar distances of d=4.792 Å in C-MNPs, d=4.848 Å in CV-MNPs and

d=4.798 Å in VP-MNPs, all associated with the plane (111). Chemical synthetic polyphenols in

commercial extract allowed the formation of crystalline phases closer to magnetite structure;

meanwhile aqueous natural extracts oxidize the surface yielding magnetite-maghemite MNPs,

due to the additional water molecules from the extract.

The hysteresis loops MS (emu/g) vs H (Oe) at room temperature (Figure 4) of all samples

showed a superparamagnetic state of the MNPs, as expected for single-domain configurations of

these sizes. A small contribution to the coercive field HC (see Table 1) can be noticed, and could

be originated in larger magnetic anisotropy and/or the contribution of larger particles within the

size distribution. The saturation magnetization MS values from the curves are also displayed in

Table 1. The largest value corresponded to C-MNPs sample (C. verum extract, MS= 70.84

emu/g), consistent with the more ordered crystal structure of the magnetic core observed in

HRTEM images. In VP-MNPs (vanilla pods), the sample has the smallest average particle size,

the saturation value MS=59.45 emu/g was the lowest and thus this is likely to be related to
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surface effects. We note that since the average particle sizes are around 15 nm, it is possible that

the different phenolic capping layers on different samples could also have influence on the

surface ordering of the -Fe2O3 magnetic moments.

Figure 4. Hysteresis loops Fe3O4@-Fe2O3 MNPs measured at 300 K. Left inset:
enlargement of the coercive field for each synthesis.

This influence of the capping materials on the surface spin order has been reported for several

MNPs with silica, dextran and starch coatings (31). All in all, the present values of MS compare

well with other reported values from MNPs biosynthesis: MS=55.4 emu/g using Mimosa pudica

(54); MS=22.1 emu/g from Sargassum muticum (55); MS=13.2 emu/g using Passiflora tripartite

var. (56); MS=37.1 emu/g in soya bean sprouts (57); MS = 68 emu/g from Aspergillus niger

fungi (58); MS=15.8 emu/g from Plantain peel extract (59); MS=13.6 emu/g from Sysygium

cumini (60) or MS=48.77 emu/g from marine bacteria Shewanella sp. (61). Indeed, to the best of

our knowledge, the present C-MNPs obtained by the one–step reaction from Cinnamon verum

extracts have the highest MS = 70.84 emu/g reported so far.
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Figure 5. Magnetic domains in VP-MNPs: (a) Topography of Fe3O4@Fe2O3 magnetic nanoparticles; (b) Totally
saturated individual MNPs; (c) Magnetic domains in the core region and orientation in response to the AC field
(arrows), attractive (brighter zones) or repulsive (darker zones) interactions; (c) Projection of selected domains
(dotted line) and their dimensions (d) in profile.

The magnetic properties of the samples as evaluated by AFM-MFM measurements showed real-

time domain orientation of the single-domain MNPs under an AC magnetic signal (Figure 5).

The average signal from magnetic domains showed the precession expected under ac fields as

reflected in the topographic profiles (Figure 5d), and the uniaxial nature of magnetic domains

shifted according to the attractive or repulsive responses with the MFM lift conditions. It can be

seen that MNPs distribution changes depending on the tip magnetization, reflecting the

dependence of the interaction on MNPs size and topography. Single domain Fe3O4@Fe2O3

MNPs can be aligned by an external magnetic field and return to the initial conditions. Figure

S1 (see Supplementary Information) shows magnetic domains interactions and the expected

orientation (inset of Figure S1) following the magnetic field. Profiles from the magnetic

domains showed average domain sizes of 6 nm for C-MNPs sample, and about 3 nm for SV-

MNPs and VP-MNPs samples. All domains displayed an uniaxial behavior following the

patterns shown in figure S1-a3 and S1-b3. The topography exhibited agglomeration of the

MNPs (figure 5-a) with interphase among domains (Figure S1-a2, b3). The AC field H ≥12000

Oe was applied until the MNPs showed a completely saturated state (Figure S2).

3.2. Power absorption measurements

The systematic study on the SPA dependence with applied field H0 was performed to determine

the best heating efficiency of the MNPs in water (Table I).  The data were fitted with a field

dependence = A , where A is a constant depending on the initial magnetic susceptibility

Page 15 of 32 AUTHOR SUBMITTED MANUSCRIPT - NANO-116170.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



of the MNPs and is a parameter that allows estimating the validity of the Linear Response

Theory (45). The best fits yielded values =2.5±0.5 for SV-MNPs, = 2.7±0.4 for VP-MNPs

and =2.4±0.4 for C-MNPs, closed to the value of =2 expected within the validity range of the

Linear Response (Figure 6). The highest SPA values at f=570 kHz and H0=23.9 kA/m were

found for C-MNPs  (SPA= 335.69 W/g), which also has the highest MS value and a coercivity

of HC (see Table I). For VP-MNPs, having a wider particle size distribution, the values were

consistently lower (SPA=233.96 W/g), and the lowest SPA values were observed for SV-MNPs

(78.93 W/g). As the specific power absorption depends on the concurrent effects of particle size

distribution and magnetic anisotropy, it is difficult to establish the origin of the lower SPA in

SV-MNPs without a systematic analysis of the magnetic configuration in this sample.

0 5 10 15 20 25
0

100

200

300

SP
A 

(W
/g

Fe
3O

4)

H0 (kA/m)

C-MNPs
SV-MNPs
VP-MNPs

Figure 6. SPA dependence with applied magnetic field H0 (f=570 kHz) for
samples C-MNPs, SV-MNPs and VP-MNPs in water. Dashed lines are the best

fits using = A for the three samples.

3.3. In vitro experiments of toxicity, uptaken and power absorption.

The toxicity of all MNPs in BV-2 cells, evaluated for concentrations up to 100 g/ml of MNPs,

showed that even at the highest concentrations all MNPs are remarkably innocuous for this cell

line, showing in all cases cell viabilities higher than 94 % as compared with control cells

(Figure S3 in Supplementary Information). These results suggest that the phenols at the particle

surface constitute a natural camouflage that diminishes toxicity of MNPs comparing with non-

coated Fe3O4 MNPs.

The uptake of both C-MNPs and VP-MNPs by BV2 cells after overnight incubation was also

quantified as a function of added MNPs concentration (Figure 7).
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Figure 7. Cell uptake vs total amount of added Fe3O4@Fe2O3 MNPs
(C-MNPs and VP-MNPs) at 24 h incubation time.

For both C-MNPs and VP-MNPs a linear increase of the uptaken mass with added

concentration was found (Figure 7). The resulting concentration of MNPs was systematically

higher for VP-MNPs than C-MNPs. A linear fit of the data using a linear = + function

(with = 0) yielded values of = 0.091 and = 0.071 for VP- and C-MNPs, respectively.

These uptake rates of 9% and 7% reflect the similarities in MNPs coatings in both cases. The

mechanism for MNPs-cell membrane interaction can be related to the main components of

cinnamaldehyde and vanillin in the extracts, which adds a negatively charged coating by the

ionization of the exposed carboxylic groups (COO-) in VP-MNPs and partially hydrophobic

surface in C-MNPs due to terpenoids. Their particle size and natural organic coating enhance

their diffusion rates through the cell membrane aided by polyphenols and terpenoids that

permeate easily (37, 62). DLS measurements indicated the formation of aggregates with

hydrodynamic diameter (dH) of 274 nm (=11.7) in VP-MNPs and larger agglomerates of dH=

828 nm to 1.08 m ( =26.9) in C-MNPs. These agglomerates can be uptaken by BV2 cells

since they show active uptake mechanisms of either agglomerated or non-aggregated MNPs.

The intracellular distribution of MNPs will be discussed in TEM section. Figure S4-a confirmed

the formation of large intracellular clusters. Additionally, smaller agglomerates observed

attached to the cell membrane, which could be due to the activation of polyphenol specific

binding sites on the membrane (arrows in Figure S4-b), constituting the first step of an active

endocytosis pathway (63).

Page 17 of 32 AUTHOR SUBMITTED MANUSCRIPT - NANO-116170.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



3.4. Determination of SPA in BV-2 cell pellets.

Recent evidence indicates that physiological media (DMEM, cells viscosity) modifies

nanoparticles hydrodynamic size due to their interaction with the constituent proteins and

growth factors in cell culture media making up a “protein corona”. These proteins attach to their

surface increasing hydrodynamic radius and change mechanical properties. In order to

determine the heating capacity of cinnamon and vanilla pods MNPs within the cell cytoplasm, a

preliminary heating experiment was performed in cell pellets containing 1.5×107 cells. The

obtained temperature vs. time heating profiles (Figure S5 in Supplementary Information)

showed that for f=570 kHz and H0= 23.9 k A/m the cells containing VP-MNPs the temperature

increased up to hyperthermic values within the first seconds (43 ºC after 65 s), thus providing

enough power absorption to perform the actual magnetic hyperthermia experiments to be

performed. On the other hand, using the same number of cells with C-MNPs the hyperthermic

threshold temperature (43 ºC) was achieved only after 430 seconds, with a maximum observed

value of 53 ºC after 25 minutes. Consistently, the in vitro SPA values obtained from these

experiments were SPA = 237 W/g and 118 W/g for in VP-MNPs and C-MNPs, respectively.

Based on the above results the VP-MNPs were chosen as the more efficient system to develop

the magnetic hyperthermia experiments in vitro described below.

3.5. Magnetic hyperthermia (MHT) in vitro.

To perform magnetic hyperthermia experiments in BV-2 cell line using the VP-MNPs the cells

were cultured to 80% confluence and 100 g of MNPs were added and incubated for 24 h. It is

worth noting that this incubation time is shorter than the doubling time TD=31.4 h determined

for this cell line, and this fact assures that the intracellular MNPs concentration does not change

due to cell duplication (46). After incubation, pellets containing >1.8x107 cells were suspended

in 150 l of completed culture media. A target temperature of T = 46 ºC was chosen and

maintained during 30 minutes (f=570 kHz and H0=23.9 kAm-1) by feedback control of the

magnetic field intensity. The MHT controls were established as follows: a) BV-2 cells without

MNPs b) cells incubated with MNPs and no-MHT treated c) BV-2 cells without MNPs and

treated to AMF d) cells incubated with MNPs and exposed to AMF for 30 minutes (Figure 8).

Cell viability was assessed immediately (5 min) after the experiments and after 6 hour (t=6h)

of reseeding the treated pellet.
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Figure 8. Magnetic hyperthermia on BV-2 cells. All experiments with VP-MNPs (100 g/ml) were done
in triplicate at f=571kHz, H0=23.9 kAm-1 and target temperature T = 46 oC. Error bars are the mean
standard deviation.

The results showed that the cell viability examined immediately after the MHT experiments

decreases down to a 20% of survival as compared to control samples. Moreover, reseeding the

cells and analyzing the viability after 6 h showed even lower cell viability (12%) reflecting the

extent of cell damage induced by MHT on cell processes like cell division, organelles metabolic

routes, protein denaturation among others. These findings are in agreement with recent results

(64) observed after MHT on BV-2 cells and reseeding times of 4 h. Moreover, it has been

suggested that these effects could be related to a “bystander effect” on neighbor cells after

magnetically induced cell death (65). In all cases, control cells kept their viabilities up to 98-

99%, ensuring that neither only MNPs nor AMF alone had an effect on cell viability.

Figures 9 and 10 show the sequence of the applied MHT in BV-2 cells. Where VP-MNPs inside

cells were identified by EDS-X analysis (figure 9d). The MHT process from control to induced

cell death was observed in TEM images. Figure 10a shows none-treated cells with unaltered

morphology. Figure 10b, BV-2 cells incubated with VP-MNPs and none-AMF exposed. TEM

images revealed large phagocytic vesicles and MNPs-clusters across the cytoplasm with a semi-

homogenous distribution. BV2 cells after MHT treatment (Figures 10 c-i), some MNPs were

arranged in large clusters (Figure 9a) and others dispersed along the cytoplasm (Figure 10c and

10f). Figure 9b SEM-FIB images, where MNPs-clusters (15-25 nm) inside lysosomes appeared

partially digested. That diminishes their agglomeration as a consequence of their dipolar

interactions. Others MNPs-clusters remained in transit to the cytoplasm and were distributed
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along the cell membrane (arrows in Figure 9a). Those MNPs were embedded in the extracellular

cell matrix and contributed to heat generation alike in viscous media (through torque force). The

SPA in a pellet containing >1.8x107 cells indicated a heating efficiency of 800 W. As a result of

the induced magnetic hyperthermia an increased denaturation process in cell membranes (Figure

10c-f) as well as organelles (Figure 10h) was observed.

Figure 9. SEM-FIB images of (a) BV-2 cell after MHT at 46 °C (570 kHz, 23.9
kA/m) during 30 min, using VP-MNPs (100 g/ml). The nucleus (N) is visible.
The arrows signal the MNPs in transit from the cell membrane and into a
phagosome. (b) Enlarged image from the intracellular agglomerate of MNPs
shown in (c). (d) EDS-X spectra of the agglomerate area marked in (c) showing
the absorption peak of iron from MNPs.

3.6. Ultrastructural morphological analysis of cell damage after MHT treatment.

The ultrastructure of BV-2 cells incubated with 100 g/ml of VP-MNPs and exposed to f=570

kHz, H0=23.9 kAm-1, then reseeded for 6h was analyzed by TEM. The control cells with none-

MNPS added displayed the normal cell ultrastructure (Figure 10a). Those exhibited numerous

cell membrane extensions (filopodia), common feature of this macrophage-like immune brain

cell. The organelles ultrastructure is well preserved. The nucleus occupies most of cytoplasm

extension with a dense chromatin (heterochromatin) surrounding the nuclear cell membrane.

This is interconnected with transcriptional active DNA regions less electrodense (euchromatin).

The highly ordered ultrastructure of the nucleolus was observed as a large electrodense region.

The control cells with added MNPs and non-MHT treated (Figure 10b), exhibited large cell

membrane invaginations as a result of an active phagocytic process during the MNPs

internalization. These invaginations in the cytoplasm were observed as some small lysosomes

and large phagocytic vacuolae with numerous MNPs. The cell nucleolus exhibited an increased
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size as a result of the activation of the molecular machinery for the synthesis of biomolecules

required for MNPs digestion and signaling cascades of phagocytosis, endocytosis processes.

Cells incubated with MNPs and exposed to an AMF (Figures 10c-i) exhibited extended

denatured areas in the cytoplasm. As a result organelles ultrastructure was disrupted with

remnants surrounded by MNPs aggregates. The filopodia are absent due to cytoskeletal proteins

denaturation during heating by MNPs. In some cells the cell membrane integrity was lost

changing cells osmolality. As a result increased permeability induced cells swelling and

membrane blebbing (arrows in Figure 10e). Then cells appeared to “burst” (alike necrosis),

without releasing cytoplasm content. Inside those cells apoptotic bodies were observed (dotted

squares in Figure 10c). In late apoptosis stage cell nucleus shrinks and finally it´s fragmented,

leading to apoptotic bodies’ formation (pyknotic nuclei). Some were observed among highly

denatured cells in final apoptotic stages (Figure 10d).
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Figure 10. TEM images of BV-2 cells. (a) Control cell (b) incubated with 100 g/ml of VP-MNPs and (c-
i) MHT at 46 °C, 30 min, 570 kHz and 23.9 kA/m. Nucleus (N), nucleolus (nu), chromatin (cr), apoptotic
bodies (AB), vacuolae (V). Magnetic nanoparticles (MNPs) surrounded by remnants of denatured
organelles. See text description.

Other cells were shrunken with a highly vacuolated cytoplasm, small nuclei, and loss of

filopodia to the periphery with the formation of membrane-bound fragments (arrows, Figure

10i). All these morphological changes of apoptotic cell death (66). In other cells highly

chromatin condensation and decreased cell volume was observed, corroborating this cell death

process.

In response to heat stress the synthesis of heat shock proteins (HSP) increases (67), and cell

metabolic activity can be monitored trough nuclear chromatin packing and un-packing

processes (square in Figure 10e) as well as in nucleolar morphology. In response to heat stress

the constitutive level of genome transcription decreases and as a result nuclear chromatin is
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packed in even denser regions (68). Nucleolus becomes transcriptionally active and enlarger due

to the increased synthesis of molecular machinery for the transcription of HSP. This increase in

size (Figures 10e-g) is associated with apoptotic cell death by hyperthermia (66, 68).

Among the cell population some appeared “non-damaged”, (Figure 10g) but a closer inspection

revealed an increased nucleolus metabolic activity as explained. The internalized MNPs

appeared partially digested and organelles structurally damaged. Those alterations lead to a

diminished response that alters the cell capacity to reestablish their metabolic functions as a

consequence decreasing their survival (Figure 10f) after the MHT treatment (64). The level of

damage is up to the distribution of MNPs along the cytoplasm and the formation of small

dispersed (Figure 10f) or large agglomerates (Figure 10g). Those extensively distributed along

cell cytoplasm exhibited more denatured areas, while those in a large cluster seemed not exerted

an extensive intracellular damage but apoptotic features are more evident. However, all these

ultrastructural changes suggest apoptotic and necrotic mechanisms for cell death.

4. Discussion

The genus Cinnamomun (family: Lauraceae) consists of 250 species of trees and shrubs

distributed in South-east Asia, China and Australia. C. verum is native from Sri Lanka.

Cinnamon is a small evergreen tree, 10-15m tall. The bark is used widely as a spice and as a

preservative in food, due to their antioxidant property and antidiabetic agent a value-added

product from cinnamon. The dried bark oil of cinnamon contains volatile oil,

proanthocyanidins, tannins, proteins, pentosans, starch, calcium oxalate, mineral elements,

eugenol and phenolic compounds (cinnamaldehyde, hydroxycinnamic acid) (69). The relative

abundance of these components varies considerably according to location, age of the tree,

climatic condition season time of harvest and duration of storage (70).  Members of the genus

Cinnamomun (C. zeylanicum) have been used to reduce silver, palladium and gold ions (71, 72).

The reduction has been ascribed to the phenolic (euglenol), terpenoids, polysaccharides and

flavones in the extract (73). Euglenol abundant in Tea green and eucalyptus extracts has been

used to synthesize iron nanoparticles (23). Magnetite nanoparticles have been functionalized

with synthetic cinnamaldehyde for magnetic hyperthermia to enhance breast cancer treatment

(74). It has also been used to enhance the antimicrobial efficacy in chitosan/polyethylene oxide

nanofibres against pseudomonas infections (37). The major chemical compounds of

Cinnamomun verum extract are summarized in Figure 11.
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Figure 11. Structural formulae of main compounds in cinnamon extract.

(E)-cinnamaldehyde is the main organic compound in Cinnamomun verum (85-98%), followed

by eugenol and trans-cinnamic acid (5-10%) according to Ooi et al. (75) and Tomas et al. (70).

Due to the complex mixture of biomolecules in the extracts the mechanism of biosynthesis is

not entirely clear yet. According to several researches (17) phenolic-OH groups and ortho-

dihydroxyphenyl groups under the influence of basic-pH oxidize to quinone, which in instance

donate their electrons from hydroxyl radical (-OH) to form a complex with metallic cations and

reduce Fe2+/Fe3+ ions to produce Fe3O4@Fe2O3 nanoparticles. The delocalized electrons in the

aromatic ring potentiates the reduction reaction also donating their electrons, whereas organic

acids carboxyl groups (-COOH) lose their hydrogen atom and become a carboxylate ion (COO-)

during reduction. This mechanism stabilizes the electrosterical attachment to the nanoparticle’s

surface through organic chains (17). The bioreduction reaction can be represented as follows

(76):

+ → [( ) ] + Eq.(1)+ [( ) ] + → [( ) ] + + Eq.(2)

[( ) ] + 2 + + ⟹∆ + + Eq.(3)

Where "R" is the organic chain polyphenol -OH that yields the bioreduction of Fe atoms

(Figure 12).

Figure 12. Scheme of chemical events during green synthesis. Polyphenols act as capping and bioreducing agents of
iron cations. A partially oxidized nanoparticles surface of -Fe2O3 (red) with a Fe3O4 core is confined by polyphenols
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in aqueous extract. Then base addition enhances the thermodynamic reaction to homogeneous iron nanoparticles
precipitation.

Vanilla, a vine known since the Aztecs age, is a genus of about 110 species in the orchid family,

an evergreen plant occurring in tropical and subtropical regions of tropical America, Asia, New

Guinea and West Africa (77, 78). The main species for vanillin is Vanilla planifolia, native of

Mexico but currently grown widely throughout the tropics. The major phenolic content in cured

vanilla beans V. planifolia is vanilla, vanillic acid and 4-hydroxybenzaldehyde (78, 79) (Figure

13). Due to their antioxidant and antimicrobial properties vanillin is used as a food preservative

(80). Vanillin is used as a starting material for the synthesis of L-dopa, for treating Parkinson’s

disease (79) and has been reported to assist the synthesis of silver nanoparticles (81).

Figure 13. Structural formulae of phenols in vanilla pods.

These structures are similar poylphenols -OH like C. verum and the bioreduction mechanism

would be the same. Considering cinnamaldehyde as a milder reducing agent (E0=588 mV) (82)

than vanillin (E0=670-750 mV) (79), in electron transfer from their –OH groups during

bioreduction. In our case C. verum and V. planifolia (natural and synthetic vanilla) aqueous

extract assisted the formation and stabilization of Fe3O4@Fe2O3 nanoparticles by co-

precipitation synthesis. Those were tested for hyperthermia in BV-2 microglia cells a model to

research related neurodegenerative disorders (83).

Green syntheses as an ecofriendly alternative to chemical synthesis has been rarely explored

regarding hyperthermia applications. It has been reported that biogenic magnetic iron

nanoparticles like those from magneto-bacteria exhibit many good properties for biomedical

applications, but their potential immunogenicity due to bacterial proteins surrounding the MNPs

constitutes a drawback to be overcome before they can be safely applied to humans. Also

solvent-based synthesis methods can produce MNPs with good heating performance (84, 85),

but the by-side toxics generated from chemical reactions are rather hazardous and must be

reduced in order to avoid environmental impact. In this regard, nanoparticles synthetized using

plants aqueous extracts offer an experimental advantage to explore a less toxic synthesis of

these materials, taking advantage of abundant biomolecules in nature related to oxidation-
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reduction intracellular reactions. Among these biomolecules, polyphenols have been used to

explore the biosynthesis of metallic nanoparticles (Au, Ag, Pt, Fe). Those have proved to be

faster and simplified methodologies with higher nanoparticles yield production. Also in some

cases diminish or replace the use of toxic organic solvents or neurotoxic reducing agents that

assist nanoparticles synthesis, avoiding nanoparticles further processing for a biomedical

application (19, 20). In order to explore this option we tested aqueous extracts from cinnamon

(Cinnamomum verum), vanilla pods (Vanilla planifolia) and a commercial synthetic vanilla

extract to assist the synthesis of MNPs. Due to their major polyphenols composition of

cinnamaldehyde and vanillin, that aids the bioreduction of Fe2+/Fe3+ ions and growth of MNPs.

In our case a magnetic core of Fe3O4 surrounded by a layer of -Fe2O3 was synthesized. The

global structural characterization by XRD confirmed the obtained phase with small changes in

lattice parameters due to vacancies Fe2+ in the surface. It has a surrounding layer of

biomolecules of polyphenol nature as indicated by FT-IR and TEM images.

The FT-IR values at 572 cm-1 of the obtained MNPs, are in accordance with those of Herrera-

Becerra who reported a maximum absorption at 572 and 544 cm-1 for iron oxide nanoparticles

synthetized with gallic acid and tannic acid, respectively (17). However other phytochemicals in

the extract (i.e., vanilla extract), involved during the bioreduction process, must be kept in mind.

Reports of the complex mixture in the extract suggest an elemental composition of reducing

sugars such as -D-glucosides (80). The partial reduction of FeCl3 ions to obtain Fe3O4

nanoparticles has been reported using a highly abundant carbohydrate leaf extract of Tridax

procumbens as reducing agents (86). In our case, the rich mixture in the extract requires further

exploration.

The sizes obtained by this method were in the range of 10-14 nm. These nanoparticles exhibited

a partially oxidized surface. Both characteristics have been reported to be in the size range (for

magnetite) of good nanoheaters in liquid and viscous media (87), and the oxidized surface is

more stable conferring high biocompatibility (88) for medical applications. In our case the

synthesis method offers a particle size in the range of good heating performance and a bioactive

surface to cells.

VSM analysis of their hysteresis loops indicated that all synthetized nanoparticles are near

superparamagnetic. A comparison with similar methodologies of synthesis reported (54-61) that

used bioreducing agents from aqueous plant extracts to obtain iron MNPs shows that those

obtained with cinnamaldehyde had the highest saturation values (70.84 emu/g). These

polyphenols act as an effective surface coating and add an evidence of their capacity as

antioxidants (39). TEM observations suggested that the coating was not as wide as in vanilla

synthesis, which is in agreement with their diminished saturation value (60 emu/g). The

diminished magnetic saturation as a function of organic layer density has been reported

elsewere (89). In our case, also influences the colloid behavior as DLS data showed the
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formation of larger agglomerates in cinnamon (dH=828nm-1.08m) MNPs vs vanilla

hydrodynamic radius (dH=274 nm). The synthesis of larger ovoid forms observed by TEM in

cinnamon extract could also contribute to the increased MS (90).

The polyphenol-decorated surfaces constitute an effective coating that also improves

biocompatibility, as inferred from cytotoxicity assays. The intracellular distribution and some

MNPs-clusters attached to the cell membrane are consistent with the different stages of an

active uptake process. Moreover, both endocytosis and phagocytosis pathways seem to be active

since a fraction of the MNPs in the cytoplasm were found dispersed with no membranes as

expected from a phagocytic mechanism; while the remaining fraction were agglomerated inside

large phagocytic vesicles, consistent with endocytic mechanisms (63). Although size

distributions could be improved in order to obtain more control on the final SPA values, in these

magnetic materials the agglomeration during internalization is probably the main effect to be

avoided, since their formation can largely influence SPA through dipole-dipole interactions.

These biomolecules of natural origin are a promising alternative to explore synergistic effect

hyperthermia-cell damage as suggested by few reports (74). The synthesis of iron nanoparticles

for hyperthermia using a chemical synthetized cinnamaldehyde has been made improving their

bioactivity to breast cancer cells. Sensitizing cells to nanoparticles intake and inducing an

apoptotic cell death (74). In our case natural vanillin as a bioactive molecule for MNPs cellular

internalization as far as we concern has not been reported. Our exploration suggests their

viability to achieve magnetic hyperthermia for the treatment of reactive BV2 cells as in

neurodegenerative diseases or malignant brain processes.

5. Conclusions

In this work and eco-friendly synthesis was explored in order to obtain MNPs and their potential

usage as nanoheaters. The main advantage of this method is to constitute a facile one-step

synthesis of MNPs with sizes 10-14 nm, with a stabilized surface due to partial oxidation to -

Fe2O3 (maghemite). The MNPs obtained showed the largest saturation magnetization values

reported so far, with the additional advantage that the partial oxidation to -Fe2O3 of the MNPs

surface, induced by natural polyphenols, increased particle stability. The SPA values in vitro

were enough to reach up to 88% of cell death after 30 min application for VP-MNPs. The

ultrastructural cell damage suggested that both apoptotic and necrotic processes could be

triggered by MHT (~46 oC). Even though this synthesis employs natural sources for active

biomolecules, improving the starting materials (e.g. highly purified aqueous extracts) could yet

improve the synthesis control and therefore the heating performance. These results constitute a

promising first step in ecofriendly-based low-cost synthesis routes of bioinspired systems. The
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obtained MNPs are not only biologically safe and effective for biomedical uses, but also

environmentally responsible.
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