273 research outputs found

    Order-alpha_s^2 corrections to one-particle inclusive processes in DIS

    Full text link
    We analyze the order-αs2\alpha_s^2 QCD corrections to semi-inclusive deep inelastic scattering and present results for processes initiated by a gluon. We focus in the most singular pieces of these corrections in order to obtain the hitherto unknown NLO evolution kernels relevant for the non homogeneous QCD scale dependence of these cross sections, and to check explicitly factorization at this order. In so doing we discuss the prescription of overlapping singularities in more than one variable.Comment: 16 pages, 9 eps figures. Uses revtex4 and feynm

    Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition

    Get PDF
    The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes

    Nasca Lines: A Mystery wrapped in an Enigma

    Full text link
    We analyze the geometrical structure of the astonishing Nasca geoglyphs in terms of their fractal dimension with the idea of dating these manifestations of human cultural engagements in relation to one another. Our findings suggest that the first delineated images consist of straight, parallel lines and that having sophisticated their abilities, Nasca artist moved on to the design of more complex structures.Comment: 6 pages, 1 color figure and 2 graphs. To appear in Chao

    Current density maps, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. II. Furo-furan Isomers

    Get PDF
    Magnetic susceptibility and nuclear magnetic shielding at the nuclei of bis-heteropentalenes formed by two furan units ([2,3-b], [3,2-b], [3,4-b], and [3,4-c] isomers) have been computed by several approximated techniques and a large Gaussian basis set to achieve near Hartree–Fock estimates. Ab initio models of the ring currents induced by a magnetic field normal to the molecular plane were obtained for the three isomeric systems of higher symmetry, showing that the π electrons give rise to intense diamagnetic circulation. The π currents are responsible for enhanced magnetic anisotropy and strong out-of-plane proton deshielding. The theoretical findings are used to build up a “diatropicity matrix” for two fused five-membered heterocyclic [email protected] ; [email protected]

    Multisymplectic Geometry and Multisymplectic Preissman Scheme for the KP Equation

    Full text link
    The multisymplectic structure of the KP equation is obtained directly from the variational principal. Using the covariant De Donder-Weyl Hamilton function theories, we reformulate the KP equation to the multisymplectic form which proposed by Bridges. From the multisymplectic equation, we can derive a multisymplectic numerical scheme of the KP equation which can be simplified to multisymplectic forty-five points scheme.Comment: 17 papges, 8 figure

    Non-Linear Canonical Transformations in Classical and Quantum Mechanics

    Full text link
    pp-Mechanics is a consistent physical theory which describes both classical and quantum mechanics simultaneously through the representation theory of the Heisenberg group. In this paper we describe how non-linear canonical transformations affect pp-mechanical observables and states. Using this we show how canonical transformations change a quantum mechanical system. We seek an operator on the set of pp-mechanical observables which corresponds to the classical canonical transformation. In order to do this we derive a set of integral equations which when solved will give us the coherent state expansion of this operator. The motivation for these integral equations comes from the work of Moshinsky and a variety of collaborators. We consider a number of examples and discuss the use of these equations for non-bijective transformations.Comment: The paper has been improved in light of a referee's report. The paper will appear in the Journal of Mathematical Physics. 24 pages, no figure

    Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

    Get PDF
    Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when growing high-aluminum-content layers by this technique. Furthermore, Raman measurements show the quadratic variations of longitudinal optical phonon frequencies with aluminum concentration in good agreement with previous experimental results. In this work we show that high quality indirect-gap AlxGa1−xAs samples can be grown by LPE under near-equilibrium [email protected]

    Magnetic Field scaling of Relaxation curves in Small Particle Systems

    Get PDF
    We study the effects of the magnetic field on the relaxation of the magnetization of small monodomain non-interacting particles with random orientations and distribution of anisotropy constants. Starting from a master equation, we build up an expression for the time dependence of the magnetization which takes into account thermal activation only over barriers separating energy minima, which, in our model, can be computed exactly from analytical expressions. Numerical calculations of the relaxation curves for different distribution widths, and under different magnetic fields H and temperatures T, have been performed. We show how a \svar scaling of the curves, at different T and for a given H, can be carried out after proper normalization of the data to the equilibrium magnetization. The resulting master curves are shown to be closely related to what we call effective energy barrier distributions, which, in our model, can be computed exactly from analytical expressions. The concept of effective distribution serves us as a basis for finding a scaling variable to scale relaxation curves at different H and a given T, thus showing that the field dependence of energy barriers can be also extracted from relaxation measurements.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Characterization of surface layers in Zn-diffused LiNbO3 waveguides by heavy ion elastic recoil detection

    Full text link
    Copyright (2002) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 81.11 (2002): 1981-1983 and may be found at http://apl.aip.org
    corecore